Cartography

Doç. Dr. Erkan Yılmaz

CYLINDER PROJECTIONS
Geographic Projection
Equirectangular Projection
Center Cylinder Projection
Gall Projection
Lambert Cylinder Projection
Mercator Cylinder Projection
Mollweide Projection
Sinusoidal Projection
Eckert Projection
Robinson Projection
Winkel Tripel Projection
Segmented Projections
Central Meridian Change

Drawing of the graticule (grid network) of the Geographic projection at a scale of 1/100,000,000 (Interval: 30 degree) and showing the location of Turkey.

20 cm

Drawing of the graticule (grid network) of the Equirectangular projection at a scale of 1/100,000,000 (Interval: 30 degree) and showing the location of Turkey.

20 cm

Logic

Maintaining length across the Equator
Maintaining length along Meridians
$2 \pi \mathrm{R}=2 * 3,14 * 6,37=40 \mathrm{~cm}$
$\pi \mathrm{R}=3,14 * 6,37=20 \mathrm{~cm}$
$\frac{20}{6}=3,33 \mathrm{~cm}$
$\frac{40}{12}=3,33 \mathrm{~cm}$

Geographic and Equirectangular Projections

Türkiye

$\varphi_{36}=\frac{\pi \mathrm{R}}{180} * 36=\frac{20}{180} 36=4,00 \quad \gamma_{26}=\frac{2 \pi \mathrm{R}}{360} * 26=\frac{40}{360} 26=2,89$
$\varphi_{42}=\frac{\pi \mathrm{R}}{180} * 42=\frac{20}{180} 42=4,67 \quad \gamma_{45}=\frac{2 \pi \mathrm{R}}{360} * 45=\frac{40}{360} 45=5,00$
Logic
Maintain length along standard parallel
Maintaining length along Meridians.
$2 \pi \cos _{40} \mathrm{R}=2 * 3,14 * 0,766^{*} 6,37=30,64 \mathrm{~cm}$
$\pi \mathrm{R}=3,14 * 6,37=20 \mathrm{~cm}$
$\frac{20}{6}=3,33 \mathrm{~cm}$
$\frac{30,64}{12}=2,55 \mathrm{~cm}$
Türkiye
$\varphi_{36}=\frac{\pi \mathrm{R}}{180} * 36=\frac{20}{180} 36=4,00 \quad \gamma_{26}=\frac{2 \pi \cos _{40} \mathrm{R}}{360} * 26=\frac{30,64}{360} 26=2,21$
$\varphi_{42}=\frac{\pi \mathrm{R}}{180} * 42=\frac{20}{180} 42=4,67 \quad \gamma_{45}=\frac{2 \pi \cos _{40} \mathrm{R}}{3600} * 45=\frac{30,64}{360} 45=3,83$

Features of Projection

- Entire world.
- Maintains length along meridians.
- Parallels are straight lines parallel to the equator.
- The parallel spaces are equal.
- Meridians are lines perpendicular to the equator.
- Meridian spaces are equal.
- Distortion is low a the the equatorial region. As you move from the equator to the poles, the distortions increase.
- The distortions at the poles are infinite.

Plate Carrée

 Plane Chart Geographic Projection Latitude Longnitude

WGS84

Usage

- It was used in maps made in the 15th and 16th centuries.
- It is used in the construction of maps that assume the world as a sphere.
- Index maps.

Features of Projection

- Entire world.
- Maintains length along meridians.
- Parallels are straight lines parallel to the equator.
- The parallel spaces are equal.
- Meridians are lines perpendicular to the equator.
- Meridians spaces are equal.
- Distortion is low at the standard parallel surrounds.
- Distortion increases as you go from standard parallel to equator and poles.
- The distortions are in form reduction towards the equator and enlargement towards the poles going away from the standard parallel.
- The distortions at the poles are infinite.

Usage

[^0]

Getting Extra Digital Space

Merge Problem

39 - This is the best standard parallel for Turkiye.

		$\frac{5+(-15)}{2}$	$\frac{-10}{2}$
5 N	Brazil		-5
	-15		

Drawing of the graticule (grid network) of the Central projection at a scale of 1/100,000,000 (Interval: 30 degree) and showing the location of Turkey.

Türkiye
$\mathrm{h}_{\varphi 30}=\operatorname{tg} 36 * 6,37=0,7265 * 6,37=4,63$
$h_{\varphi 42}=\operatorname{tg} 42 * 6,37=0,9004 * 6,37=5,74$

$3,68 \mathrm{~cm}$

40 cm
$11,03 \mathrm{~cm}$

Central Projection
$2 \pi \mathrm{R}=2 * 3,14 * 6,37=40 \mathrm{~cm}$
$\mathrm{h}_{\varphi 30}=\operatorname{tg} 30 * 6,37=0,5773 * 6,37=3,68$
$h_{\varphi 60}=\operatorname{tg} 60 * 6,37=1,732 * 6,37=11,03$

$2 \pi \mathrm{R}$
$\pi=3,14$
$\mathrm{R}=6,37 \mathrm{~cm}$

Mantık
Tangent from the equator.
There is a light source at the center

$$
\begin{array}{ll}
\operatorname{tg} \varphi=\frac{\mathrm{hyp}}{\mathrm{adj}} \\
\mathrm{R} & \operatorname{tg} \varphi=\frac{\mathrm{h}_{\varphi 30}}{\mathrm{R}} \\
\mathrm{~h}_{\varphi 30} & \mathrm{~h}_{\varphi 30}=\operatorname{tg} \varphi^{*} \mathrm{R}
\end{array}
$$

Features of Projection

- Entire world.

- Parallels are straight lines parallel to the equator.
- The space between the parallels widen as you move from the equator to the poles.
- After 50 degrees, this space becomes visible.
- Meridians are straight lines perpendicular to the equator.
- Meridian spaces are equal.
- The poles are at the eternity.
- Distortions are low a the he equatorial region. Distortion rates increase with distance from the equator.

Usage

Panoramic photo.

- The distortion rates at the poles are infinite.

Drawing of the graticule (grid network) of the Gall projection at a scale of 1/100,000,000 (Interval: 30 degree) and showing the location of Turkey.

Türkiye

$\mathrm{h}_{\varphi 36}=\operatorname{tg} \frac{36}{2} * 10,87=0,3249 * 10,87=3,53 \quad$	$\frac{28,28}{360} * 26=2,04 \mathrm{~cm}$
$\mathrm{~h}_{\varphi 42}=\operatorname{tg} \frac{42}{2} * 10,87=0,4143 * 10,87=4,17 \quad \frac{28,28}{360} * 45=3,54 \mathrm{~cm}$	

$0 \quad 2000 \mathrm{~km}$
$2 \pi \cos 45 * \mathrm{R}=2 * 3,14 * 0,7071 * 6,37=28,28$
$R+\cos 45 * R=6,37+(0,7071 * 6,37=6,37+4,5=10,87$
$h_{\varphi 30}=\operatorname{tg} \frac{30}{2} * 10,87=0,2679 * 10,87=2,91$
$h_{\varphi 60}=\operatorname{tg} \frac{60}{2} * 10,87=0,5773 * 10,87=6,28$
$h_{\varphi 90}=\operatorname{tg} \frac{90}{2} * 10,87=1 * 10,87=10,87$

Logic
Intersect at 45 degrees Light source at the equator

$$
\mathrm{r}_{45}=\cos 45 * \mathrm{R}
$$

$$
\operatorname{tg} \varphi=\frac{o p p}{\operatorname{adj}}
$$

B'

$$
\operatorname{tg} \varphi=\frac{\mathrm{h}_{\varphi 30}}{\mathrm{R}+\mathrm{r}_{45}}
$$

$$
\mathrm{h}_{\varphi 30}=\operatorname{tg} \varphi *(\mathrm{R}+\cos 45 * \mathrm{R})
$$

Features of Projection

Gall orthographic

- Entire world.

- Parallels are straight lines parallel to the equator.
- Parallel spaces open as you go from the equator to the poles.
- Meridians are straight lines perpendicular to the equator.
- Meridian spaces are equal.
- The poles are at the eternity.
- Distortion rates are low at the 45 degrees parallels surrounds.
- The distortion at the poles is infinite.
- Distortion increases as you go from 45-degree parallel to equator and poles.
- The distortions are in form reduction towards the equator and enlargement towards the poles going away from the 45-degree latitude.

Drawing of the graticule (grid network) of the Lambert Cylinder projection at a scale of $1 / 100,000,000$ (Interval: 30 degree) and showing the location of Turkey.

Türkiye

$$
\begin{aligned}
& \mathrm{h}_{\varphi 36}=\sin 36 * \mathrm{R}=0,5878 * 6,37=3,74 \\
& \mathrm{~h}_{\varphi 42}=\sin 42 * \mathrm{R}=0,6691 * 6,37=4,26
\end{aligned}
$$

$$
\begin{aligned}
& \frac{40}{360} * 26=2,89 \mathrm{~cm} \\
& \frac{40}{360} * 45=5 \mathrm{~cm}
\end{aligned}
$$

Lambert Cylinder Projection

$$
2 \pi \mathrm{R}=2 * 3,14 * 6,37=40 \mathrm{~cm}
$$

$h_{\varphi 30}=\sin 30 * R=0,5 * 6,37=3,185$
$h_{\varphi 60}=\sin 60 * R=0,8660 * 6,37=5,52$
$\mathrm{h}_{\varphi 90}=\sin 90 * \mathrm{R}=1 * 6,37=6,37$
$\frac{40}{12}=3,33 \mathrm{~cm}$

$$
\begin{aligned}
& 2 \pi \mathrm{R} \\
& \pi=3,14 \\
& \mathrm{R}=6,37 \mathrm{~cm}
\end{aligned}
$$

Logic
Tangent at the equator protect the area.
$2 \pi \mathrm{R} * \mathrm{~h}_{\varphi}$ $\sin \varphi=\frac{\text { opp }}{\text { hyp }}$
$\sin \varphi=\frac{\mathrm{h}_{\varphi}}{\mathrm{R}}$

Features of Projection

- Entire world.
- Equal area
- Parallels are straight lines parallel to the equator.
- Parallel spaces open as you go from the equator to the poles.
- Meridians are straight lines perpendicular to the equator.
- Meridian spaces are equal.
- The equator and its immediate surroundings have low error.
- Distortion rates increase going away from the equator.

Lambert Equal-Area Cylindric Cylindric Equal-Area

Usage

- It is used for making of maps that equal area.

Drawing of the graticule (grid network) of the Mercator projection at a scale of 1/100,000,000 (Interval: 30 degree) and showing the location of Turkey.
Türkiye

$\mathrm{h}_{36}=4,3$	$\frac{40}{360} * 26=2,89 \mathrm{~cm}$
$\mathrm{~h}_{42}=5,15$	$\frac{40}{360} * 45=5 \mathrm{~cm}$

MERKATOR PROJEKSIYON

$$
2 \pi \mathrm{R}=2 * 3,14 * 6,37=40 \mathrm{~cm}
$$

$$
h_{30}=3,5
$$

$$
\mathrm{h}_{60}=8,39
$$

$$
\frac{40}{12}=3,33 \mathrm{~cm}
$$

Tangent at the equator, conform.
$2 \pi \mathrm{R}$
$\pi=3,14$
$\mathrm{R}=6,37 \mathrm{~cm}$

Features of Projection

- Entire world.

- Conform

- Parallels are lines parallel to the equator.
- The spaces between the parallels widen as you move from the equator to the poles.
- After 75 degrees, this spaces becomes visible.
- Meridians are straight lines perpendicular to the equator.
- Meridian spaces are equal.
- The poles are thrown to the eternity.
- The best near the equator is shown. Distortion rates increase with distance from the equator.
- The distortion at the poles is infinite.

Usage

- Nautical and flight charts.
- Loxodrome.
- Drawing of maps aimed at maintaining angles.

Loxodrome
A path, also known as a rhumb line, which cuts a meridian on a given surface at any constant angle but a right angle. If the surface is a sphere, the loxodrome is a spherical

[^0]: - The making of maps aimed at maintaining length along a parallel.

