Cartography Doç. Dr. Erkan Yılmaz

CYLINDER PROJECTIONS

Geographic Projection

Equirectangular Projection

Center Cylinder Projection

Gall Projection

Lambert Cylinder Projection

Mercator Cylinder Projection

Mollweide Projection

Sinusoidal Projection

Eckert Projection

Robinson Projection

Winkel Tripel Projection

Segmented Projections

Central Meridian Change

Drawing of the graticule (grid network) of the Eckert I projection at a scale of 1/100,000,000 (Interval: 30 degree) and showing the location of Turkey.

Pseudo

Equator

 $2\pi R = 2*3, 14*6, 37 = 40 cm$

Central meridian and poles

 $\pi R = 3,14*6,37 = 20 \text{cm}$

Parallels

Spaces are equal

$$\frac{20}{180}$$
*30 = 3,33

Meridians

$$\frac{20}{360}$$
 * 30 = 1,67

$$\frac{40}{360}$$
*30 = 3,33

ECKERT 1 PROJEKSİYON

Logic

Maintain the equator length Maintain the central meridian length Poles are equal to a meridian

- Entire world.
- Parallels are straight lines parallel to the equator.
- Parallel spaces are equal.
- Meridians are oblique.
- Meridian spaces are equal at any parallel.
- The equator and central meridian and their immediate surroundings have low error.
- Distortion rates increase going away from the equator and central meridian.

Eckert I, II, III, IV, V, VI

Usage

- Atlas.
- Modis image

Drawing of the graticule (grid network) of the Sinusoidal projection at a scale of 1/100,000,000 (Interval: 30 degree) and showing the location of Turkey.

Pseudo Merkator-Sanson

Equator

 $2\pi R = 2*3, 14*6, 37 = 40 cm$

Central Meridian

 π R = 3,14*6,37 = 20cm

Parallels

Spaces are equal Maintain the length

$$\frac{20}{180}$$
 * 30 = 3,33

Sinusoidal Projection

Logic

Maintain the equator length Maintain the central meridian length Maintain the parallels lenth

Parallels Length

 $\varphi_{30} = 2\pi \cos 30 * R = 2 * 3,14 * 0,8660 * 6,37 = 34,64$ $\frac{34,64}{2} = 17,32 \text{ cm} \qquad \frac{17,32}{6} = 2,89$ $\varphi_{60} = 2\pi \cos 60 * R = 2 * 3,14 * 0,5 * 6,37 = 20$ $\frac{20}{2} = 10 \text{ cm} \qquad \frac{10}{6} = 1,67$

Meridians drawings

- Entire world.
- Equal area
- Parallels are straight lines parallel to the equator.

Sinusoidal

Sanson-Flamsteed

Mercator equal-area

- Parallel spaces are equal.
- Meridians are sinus arcs.
- Meridian spaces are equal at any parallel.
- The equator and central meridian and their immediate surroundings have low error.
- Distortion rates increase going away from the equator and central meridian.

Usage

- Equal area maps
- Atlas.

Drawing of the graticule (grid network) of the Mollweide projection at a scale of 1/100,000,000 (Interval: 30 degree) and showing the location of Turkey.

- Entire world.
- Equal area
- Parallels are straight lines parallel to the equator.
- Parallel spaces are narrower away from equator.
- Meridians are circular arcs.
- Meridian spaces are equal at nay parallel.
- The equator and its immediate surroundings have low error.
- Distortion rates increase going away from the equator and central meridian.

Usage

- Distribution maps.
- Atlas.
- It is used in the making of maps that aim to maintain the area.

Drawing of the graticule (grid network) of the Robinson projection at a scale of 1/100,000,000 (Interval: 30 degree) and showing the location of Turkey.

Pseudo

Equator

 $2\pi R = 2*3, 14*6, 37 = 40 cm$

Central Meridian

 π R = 3,14*6,37 = 20cm

Poles

0.5322 * 40cm = 21.288cm

Parallels

$\frac{20}{250}$ * 30 = 1,67	lat φ, in degrees	X	Y
360	90	0.5322	1.0000
	85	.5722	.9761
	80	.6213	.9394
	75	.6732	.8936
	70	.7186	.8435
Meridians at equator	65	.7597	.7903
	60	.7986	.7346
	55	.8350	.6769
40	50	.86/9	.61/6
$\frac{10}{10}$ * 30 = 3.33	45	.8962	.55/1
360	40	9427	.4930
200	30	9600	3720
	25	.9730	.3100
	20	.9822	.2480
Meridians at the poles	15	.9900	.1860
	10	.9954	.1240
	5	.9986	.0620
21.288/360*30=1.774 cm	0	1.0000	.0000

ROBINSON PROJEKSIYON

Logic

Maintain the equator length Maintain the central meridian length Poles are equal to **0.5322** times equator

- Entire world.
- Parallels are straight lines parallel to the equator.
- Parallel spaces are equal.
- Meridians are circular arcs.
- Meridian spaces are equal at any parallel.
- The equator and its immediate surroundings have low error.
- Distortion rates increase away from the equator.

WINKEL-TRIPEL PROJECTION

Central Meridian=0,61 equator

Oswald Winkel, 1921

Duplicating Central Meridians

