Cartography

Doç. Dr. Erkan Yılmaz

CYLINDER PROJECTIONS
Geographic Projection
Equirectangular Projection
Center Cylinder Projection
Gall Projection
Lambert Cylinder Projection
Mercator Cylinder Projection
Mollweide Projection
Sinusoidal Projection
Eckert Projection
Robinson Projection
Winkel Tripel Projection
Segmented Projections
Central Meridian Change

Pseudo

Equator
$2 \pi \mathrm{R}=2 * 3,14 * 6,37=40 \mathrm{~cm}$
Maintain the equator length Maintain the central meridian length Poles are equal to a meridian

Central meridian and poles
$\pi \mathrm{R}=3,14 * 6,37=20 \mathrm{~cm}$

Parallels

Spaces are equal
$\frac{20}{180} * 30=3,33$

Meridians
$\frac{20}{360} * 30=1,67$
$\frac{40}{360} * 30=3,33$

ECKERT 1 PROJEKSIYON

ogic

- Entire world.

- Parallels are straight lines parallel to the equator.
- Parallel spaces are equal.
- Meridians are oblique.
- Meridian spaces are equal at any parallel.
- The equator and central meridian and their immediate surroundings have low error.
- Distortion rates increase going away from the equator and central meridian.

20 cm

Pseudo

Merkator-Sanson

Equator

$2 \pi \mathrm{R}=2 * 3,14 * 6,37=40 \mathrm{~cm}$
Central Meridian
$\pi \mathrm{R}=3,14 * 6,37=20 \mathrm{~cm}$

Parallels

Spaces are equal Maintain the length
$\frac{20}{180} * 30=3,33$

Logic

Maintain the equator length Maintain the central meridian length Maintain the parallels lenth

Parallels Length

$\varphi_{30}=2 \pi \cos 30 * \mathrm{R}=2 * 3,14 * 0,8660 * 6,37=34,64$
$\frac{34,64}{2}=17,32 \mathrm{~cm} \quad \frac{17,32}{6}=2,89$
$\varphi_{60}=2 \pi \cos 60 * \mathrm{R}=2 * 3,14 * 0,5 * 6,37=20$
$\frac{20}{2}=10 \mathrm{~cm}$
$\frac{10}{6}=1,67$

Meridians drawings

Sinusoidal Projection

Features of Projection

- Entire world.

- Equal area
- Parallels are straight lines parallel to the equator.
- Parallel spaces are equal.
- Meridians are sinus arcs.
- Meridian spaces are equal at any parallel.
- The equator and central meridian and their immediate surroundings have low error.
- Distortion rates increase going away from the equator and central meridian.
- Equal area maps
- Atlas.

Sinusoidal
Sanson-Flamsteed Mercator equal-area

$8,98 \mathrm{~cm}$

Sphere Area

$$
4 \pi \mathrm{R}^{2} \quad \frac{4 \pi \mathrm{R}^{2}}{2}=2 \pi \mathrm{R}^{2}
$$

MOLLWEIDE PROJEKSIYON

Circle Area

$$
\pi \mathrm{r}^{2} \quad \pi \mathrm{r}^{2}=2 \pi \mathrm{R}^{2} \quad \mathrm{r}=\mathrm{R} \sqrt{2} \quad \sqrt{2} \cong 1,41
$$

$$
\mathrm{r}=6,37 * 1,41=8,98
$$

Parallels

$$
\mathrm{h}_{\varphi 30}=\sin 30 * \mathrm{R}=0,5 * 6,37 * 1,14=4,49
$$

$$
\mathrm{h}_{\varphi 60}=\sin 60 * \mathrm{R}=0,866 * 6,37=7,78
$$

Features of Projection

- Entire world.

- Equal area
- Parallels are straight lines parallel to the equator.
- Parallel spaces are narrower away from equator.
- Meridians are circular arcs.
- Meridian spaces are equal at nay parallel.
- The equator and its immediate surroundings have low error.
- Distortion rates increase going away from the equator and central meridian.

Usage

- Distribution maps.
- Atlas.
- It is used in the making of maps that aim to maintain the area.

ROBINSON PROJEKSIYON

Pseudo

Equator

$2 \pi \mathrm{R}=2 * 3,14 * 6,37=40 \mathrm{~cm}$

Central Meridian

$$
\pi \mathrm{R}=3,14 * 6,37=20 \mathrm{~cm}
$$

Poles

$0.5322 * 40 \mathrm{~cm}=21.288 \mathrm{~cm}$

Parallels
$\frac{20}{360} * 30=1,67$

Meridians at equator

$\frac{40}{360} * 30=3,33$

Meridians at the poles

$21.288 / 360 * 30=1.774 \mathrm{~cm}$

Logic

Maintain the equator length Maintain the central meridian length Poles are equal to 0.5322 times equator

Iat ϕ, in degrees	\boldsymbol{X}	\boldsymbol{Y}
90	0.5322	1.0000
65	.5722	.9761
80	.6213	.9394
75	.6732	.8936
70	.7186	.8435
65	.7597	.7903
60	.7986	.7346
55	.8350	.6769
50	.8679	.6176
45	.8962	.5571
40	.9216	.4958
35	.9427	.4340
30	.9600	.3720
25	.9730	.3100
20	.9822	.2480
15	.9900	.1860
10	.9954	.1240
5	.9986	.0620
0	1.0000	.0000

Features of Projection

- Entire world.

- Parallels are straight lines parallel to the equator.
- Parallel spaces are equal.
- Meridians are circular arcs.
- Meridian spaces are equal at any parallel.
- The equator and its immediate surroundings have low error.
- Distortion rates increase away from the equator.

Central Meridian=0,61 equator
Poles=0,4 Equator

Oswald Winkel, 1921

Duplicating Central Meridians

Interrupted Sinusoidal and Mollweide Projections
Sinusoidal Interruption

