Cartography

Doç. Dr. Erkan Yılmaz

CONIC PROJECTIONS

Conic Equidistant Projection

de Lisle's Projection

Bonne Projection

Albers Projection

Lambert Equal Area Projection

Lambert Conic Conformal Projection

Drawing of the graticule (grid network) of the Conic Equidistant projection at a scale of 1/100,000,000 (Interval: 30 degree) and showing the location of Turkey.

$$2\pi TSP = 2*3.14*7.59 = 47.67$$

$$2\pi r_{40} = 2*3,14*(\cos 40*6,37) = 30,64$$

$$231,43$$
 $\frac{231,43}{3} = 115,72$

$$\varphi_{K60} = \frac{2\pi R(60^{2}-40)}{360} = \frac{2*3,14*6,37*20}{360} = 2,22$$

$$7,59-2,22=5,37$$

Conic Equidistant Projection

Logic

Tangent along a standard parallel.

Maintain along the meridians.

$$\varphi_{K90} = \frac{2\pi R(90 - 40)}{360} = \frac{2*3,14*6,37*50}{360} = 5,56$$
 $7,59 - 5,56 = 2,03$

$$\varphi_{K30} = \frac{2\pi R(30 - 40)}{360} = \frac{2*3,14*6,37*-10}{360} = -1,11 \quad \boxed{7,59 - (-1,11) = 8,7}$$

$$\frac{2\pi R(0-40)}{360} = \frac{2*3,14*6,37*-40}{360} = -4,44 \quad 7,59-(-4,44) = 12,03$$

$$\varphi_{G30} = \frac{2\pi R(30+40)}{360} = \frac{2*3,14*6,37*70}{360} = 7,78$$

$$7,59+7,78=15,37$$

$$\varphi_{G60} = \frac{2\pi R(60 + 40)}{360} = \frac{2*3,14*6,37*100}{360} = \frac{7,39+7,78*}{360} = 11,11$$

$$\varphi_{G90} = \frac{2\pi R(90+40)}{360} = \frac{2*3,14*6,37*130}{360} = 14,45$$

7,59+14,45=22,04

7,59

$$t g90 - \varphi = \frac{\text{opp}}{\text{hyp}}$$
$$t g90 - \varphi = \frac{\text{TSP}}{R}$$

$$TSP = t g(90 - \varphi) * R$$

$$TSP = 1,192*6,37$$

= 7,59

TSP

Features of Projection

- Entire world.
- Maintains length along meridians.
- Parallels are circular arcs.
- The parallels spaces are equal.
- Meridians are radial.
- Meridian spaces are equal on any parallels.
- Distortion rate is low at the standard parallel.
- Distortion rates increase move away from the standard parallel.

Drawing of the graticule (grid network) of de Lisle's projection at a scale of 1/100,000,000 (Interval: 30 degree) and showing the location of Turkey. (SP40).

de Lisle's Projection

Logic

Cones are tangent at two standard parallels. Maintain length along meridians.

Drawing of the graticule (grid network) of the Bonne projection at a scale of 1/100,000,000 (Interval: 30 degree) and showing the location of Turkey.

Features of Projection

- Entire world.
- Equal area.
- Its parallels are circular arcs.
- The parallel spaces are equal.
- Maintain length along the parallels.
- Central meridian is straight line, other meridians are elliptical arcs.
- Meridian spaces are equal on any parallel.
- Distortion rate is low at the standard parallel.
- Distortion rates increase move away from the central meridian and the standard parallel.

Bonne Projection

Logic

Tangent along a standard parallel. Maintain length along the parallels.

Drawing of the graticule (grid network) of the Lambert Equal Area Conic projection at a scale of 1/100,000,000 (Interval: 30 degree) and showing the location of Turkey.

(SP40).

Drawing of the graticule (grid network) of the Albers projection at a scale of 1/100,000,000 (Interval: 30 degree) and showing the location of Turkey. (SP 35, 45)

Lambert and Albers Equal Area Projections

Logic

Cone is tangent on along a parallel. Equal area.

Cone is intersected at two standard parallels. Equal area.

Lambert Equal Area Projection

