INTERSTITIEL PNEUMONIA

Localization of Inflammation

The inflammation is localized in the:

Interalveolar (between alveoli),

Interlobular (between lobules),

Peribronchial, and

Perivascular regions.

Therefore, the alveolar spaces are usually empty, and the main inflammatory reaction is observed in the connective tissue and around blood vessels.

ETIOLOGY

Viral, Allergic, and Parasitic Agents

The majority of interstitial pneumonias belong to this group.

Occasionally, **Mycoplasma** and **Chlamydia** strains can produce a similar pathological picture.

It often occurs **secondary to other pneumonias**, for example:

Distemper (in dogs)

Bordetella bronchiseptica infections

Following catarrhal bronchopneumonia

ACUTE INTERSTITIAL PNEUMONIA

Infectious Agents:

- Distemper, Feline Infectious Peritonitis (FIP)
- Salmonellosis in calves or pigs
- Toxoplasmosis
- Lungworms and Ascarid larval invasions

Inhaled Gases:

- Excessive oxygen (>50% O₂)
- Cigarette smoke
- Chemical gases

Alimentary Toxins:

L-tryptophan and certain drugs

Endogenous Toxins:

Endotoxic shock, uremia, pancreatitis

Allergic Reactions (Hypersensitivity):

For example, "allergic pneumonia."

CHRONIC INTERSTITIAL PNEUMONIA

Inhaled Dusts (Pneumoconioses):

Silica, coal dust, and similar particulates.

Infectious Agents:

- Ovine Progressive Pneumonia (Maedi) in sheep
- Chronic African Swine Fever
- Tuberculosis (outside primary lesions)
- Histoplasmosis
- Parasitic verminous pneumonias

Ingested Toxins:

• **Pyrrolizidine alkaloids** (in horses, pigs, calves, and sheep)

Allergic Causes:

Hypersensitivity reaction to Dirofilaria immitis microfilariae in dogs

Radiation:

Can be induced experimentally in laboratory animals and dogs

Collagen-Vascular Disorders:

• e.g., Canine Systemic Lupus Erythematosus (SLE)

MACROSCOPIC (NECROPSY) FINDINGS

- Lesions may be so mild that they can be easily overlooked.
- Generally, there is no marked consolidation (solidification) of the lung tissue.
- Upon opening the thoracic cavity, the lungs fail to collapse properly.
- Widespread emphysema is frequently observed.
- Color:
- Dark red → if hyperemia predominates
- Pale → if interstitial pressure and emphysema compress blood vessels
- Consistency:
- Normal or spongy/crepitant in emphysematous cases
- Cut Surface:
- Dry, with no exudate oozing, and bronchi appear empty.

- In Chronic Cases:
- Peribronchitis nodosa develops → the bronchial walls thicken, and bronchioles appear as pinpoint-sized nodules.
- In Acute Cases:
- Due to peribronchial cellular infiltration, the bronchial walls appear thickened.

HISTOPATHOLOGICAL FINDINGS

- A.Acute Stage
- Inflammation is concentrated in the alveolar walls, interlobular, peribronchial, and perivascular regions.
- Mononuclear cell infiltration predominates, consisting of lymphocytes, plasma cells, histiocytes, or monocytes.
- Neutrophils are few, which distinguishes it from bacterial pneumonia.
- In allergic cases, eosinophils may also be present.
- **Type II pneumocytes** proliferate and take on a **cuboidal shape**, producing an appearance referred to as:
 - "Epithelialization", or
 - "Fetalization" (resembling fetal lung structure).
- A hyaline membrane may form on the alveolar surface.

- B. Chronic Stage
- Proliferation of interalveolar and interlobular connective tissue is prominent.
- Lymphocytes and histiocytes are densely accumulated.
- Alveolar and bronchial epithelium show hyperplasia.
- Alveoli may appear gland-like in structure.
- Interstitial areas contain plasma cell and lymphocyte aggregates, with increased collagen fibers.
- Hyperplasia of terminal bronchial smooth muscles leads to peribronchitis nodosa.
- Expansion of interlobular connective tissue further aggravates emphysema.

OUTCOMES

- •Complete Recovery:
- •Through epithelial regeneration and resolution of inflammation.
- •Fibrosis and Structural Remodeling:
- •Healing by fibrosis leads to thickened interalveolar septa and reduced elasticity.
- Secondary Complications:
- •Development of **catarrhal**, **fibrinous**, or **necrotic pneumonia** following secondary infection.
- •Chronic Sequelae:
- •Chronic bronchitis, bronchiolitis, and emphysema may persist due to irreversible tissue changes.

DISEASES ACCOMPANIED BY INTERSTITIAL PNEUMONIA

VIRAL INTERSTITIAL PNEUMONIA

- •Viral pneumonia is common in **young animals**, especially in autumn and winter.
- •The disease is **multifactorial**; it is influenced by **viral infections**, environmental stress, and **secondary bacterial infections**.

VIRAL INTERSTITIAL PNEUMONIA

Main viral agents:

- Parainfluenza-3 (PI-3)
- Adenoviruses
- Reoviruses
- Respiratory Syncytial Virus (RSV)
- Infectious Bovine Rhinotracheitis (IBR) virus
- Mucosal Disease virus

- •Secondary bacterial agents: Corynebacterium pyogenes, Pasteurella spp., Chlamydia sp., Hemophilus sp., Streptococcus sp., Staphylococcus spp., Pseudomonas aeruginosa, etc.
- •Secondary infections can transform interstitial pneumonia into **purulent**, **abscess**, or **fibrinous** pneumonia.
- •When combined with intestinal infection, it may cause **lung-bowel syndrome**, leading to diarrhea.

MYXOVIRUS INFECTIONS (INFLUENZA GROUP)

- Usually cause catarrhal infection of the upper respiratory tract.
- •Pneumonia develops secondarily.

Pig Influenza

- Caused by Influenza Virus Type A (Myxovirus).
- •Highly contagious; may affect the entire herd at once.
- •Often associated with verminous pneumonia.
- •Seasonal, especially during cold months.
- •Secondary bacterial infections (Hemophilus, Pasteurella) are common.
- •When the virus spreads to the lungs, interstitial pneumonia appears, mainly in the anterior lobes.

EQUINE INFLUENZA

- Caused by Orthomyxovirus (Influenza A, equi virus type I).
- Primarily affects the upper respiratory tract, causing hyperemia,
 bronchitis, and broncho-interstitial pneumonia.
- Lesions show edema, desquamation, and focal erosions.
- If secondary bacterial infection occurs (Streptococcus, Staphylococcus, E. coli), abscesses and severe pneumonia may develop.
- In chronic cases, peribronchitis nodosa forms and contributes to "fading of horses".

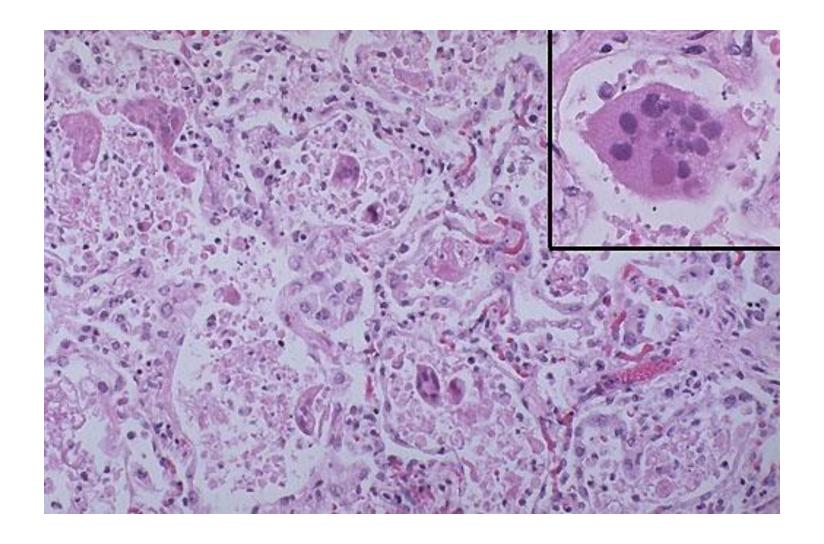
BOVINE PARAINFLUENZA-3 (PI-3) INFECTION

- Causes inflammation of the upper respiratory tract with mucous nasal discharge.
- May appear as a pure (primary) infection or combine with other pathogens in Shipping Fever and Enzootic Pneumonia.
- Lesions are typically found in the cranioventral regions of the lungs.
- Lesion type: broncho-interstitial pneumonia with atelectasis.

Microscopy:

- Hyperplasia of bronchial epithelium (2–4 days after infection).
- Intracytoplasmic inclusion bodies → diagnostic feature.

BOVINE RESPIRATORY SYNCYTIAL VIRUS (RSV) INFECTION


- •Caused by **Pneumovirus** (family *Paramyxoviridae*).
- •Very common; most herds have antibodies.
- •Often part of **bovine flu complex**.

Macroscopic:

- ·Lesions are usually mild.
- •Degenerative rhinitis, catarrhal bronchitis, bronchiolitis, swollen lymph nodes.
- •Lung lesions localized in **cranioventral** regions.
- •Atelectasis and interstitial or bullous emphysema in caudal parts.

BOVINE RESPIRATORY SYNCYTIAL VIRUS (RSV) INFECTION

- Microscopic:
- Acute bronchitis and bronchiolitis.
- Epithelial proliferation → multinucleated syncytial cells.
- Intracytoplasmic inclusion bodies in epithelial cells.
- These two findings are **pathognomonic** (diagnostic).
- Also, interstitial pneumonia, atelectasis, emphysema, and hyperplasia of peribronchial lymph follicles.

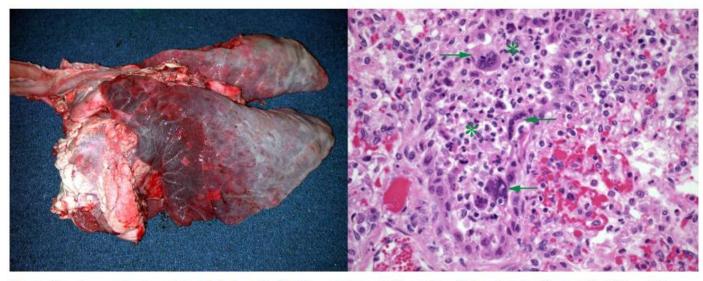


Figure: Bovine respiratory syncytial virus. **Left:** The cranioventral lung is reddened and collapsed, but the rubbery texture helps to distinguish this from a bronchopneumonia. **Right:** A bronchiole contains necrotic cells in the lumen (*), and multinucleated epithelial syncytia in the lining epithelium (arrows). These syncytia are diagnostic, but they are only present in the first 1-4 days of clinical illness.

https://ecampusontario.pressbooks.pub/pathologyoftherespiratorysystem/chapter/respiratory-diseases-of-cattle/

CANINE DISTEMPER

- •Caused by **Morbillivirus** (family *Paramyxoviridae*).
- •Affects many organs (pantropic virus).
- •Infection starts in **lymphoid tissues** (lymph nodes, tonsils).
- •If neutralizing antibodies develop within 8–9 days, virus spread stops.
- Mostly affects young dogs (<1 year); in older dogs, causes Old Dog Encephalitis.

Clinical Forms:

Respiratory form:

- Interstitial pneumonia (primary).
- Secondary infection with Bordetella bronchiseptica \rightarrow catarrhal or purulent bronchopneumonia.

Digestive form:

Catarrhal or hemorrhagic gastroenteritis.

Nervous form:

Non-purulent encephalitis or encephalomyelitis (especially in older dogs).

Ocular form:

Conjunctivitis, keratitis.

Cutaneous form:

• Eczema-like lesions, hyperkeratosis ("hard pad disease").

- Diagnosis:
- Presence of intranuclear and intracytoplasmic inclusion bodies in neurons, glial, and epithelial cells.
- **Demyelination** and **non-suppurative encephalitis** are characteristic.

In dogs distemper disease occurs primary interstitial pneumonia due to virus!

This table changes by secondary addition of bacteria such as Bordetella bronchiseptica.

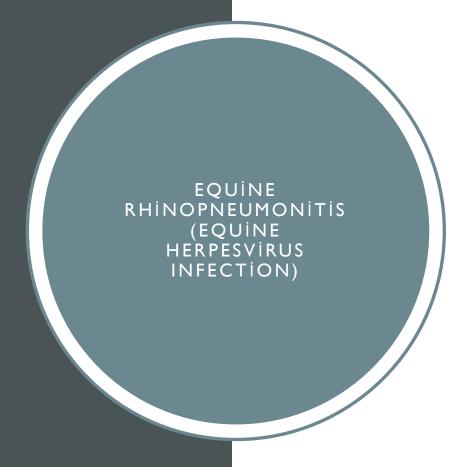
Catarrhal or other bronchopneumonia are formed!

PESTE DES PETITS RUMINANTS (PPR)

- •Caused by a **Morbillivirus**, related to distemper and rinderpest.
- •Occurs mainly in **goats and sheep** in Africa, India, and the Middle East.
- •Lesions:
- •Similar to rinderpest in digestive tract.
- •In lungs: interstitial pneumonia → may progress to catarrhal, abscess, or fibrinous pneumonia.
- •Inclusion bodies (intranuclear + intracytoplasmic) in bronchial and alveolar epithelial cells.
- •Multinucleated giant syncytial cells in lungs → diagnostic.

ADENOVIRUS INFECTION

- Dogs:
- Type I \rightarrow Infectious Canine Hepatitis.
- Type II → Respiratory disease with necrotic bronchitis and intranuclear inclusion bodies (Cowdry type A).
- May lead to interstitial pneumonia and serofibrinous exudate in alveoli.


- Horses:
- Especially in **Arabian foals** with congenital immunodeficiency.
- Causes mucopurulent exudate, atelectasis, and interstitial pneumonia.

Microscopy: necrotic-proliferative bronchitis and intranuclear inclusions in bronchial and alveolar epithelial cells.

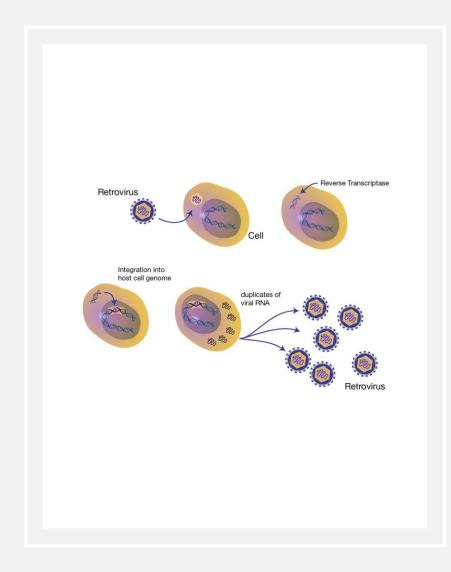
• Inclusions also occur in renal pelvis, ureter, conjunctiva, pancreas, and salivary glands.

HERPESVIRUS INFECTIONS

- •Affect both **respiratory** and **reproductive systems**.
- •Examples:
- •IBR (Infectious Bovine Rhinotracheitis) in cattle
- •Inclusion body rhinitis in pigs
- •Feline viral rhinotracheitis in cats
- •Equine rhinopneumonitis in horses

- Also called Mare Viral Abortion.
- •Causes abortion (7–10 months), respiratory signs, and neurological signs (ataxia in foals).

Transmission: aerogenic → passes through placenta to fetus.


•Adults: mild upper respiratory infection.

Fetus:

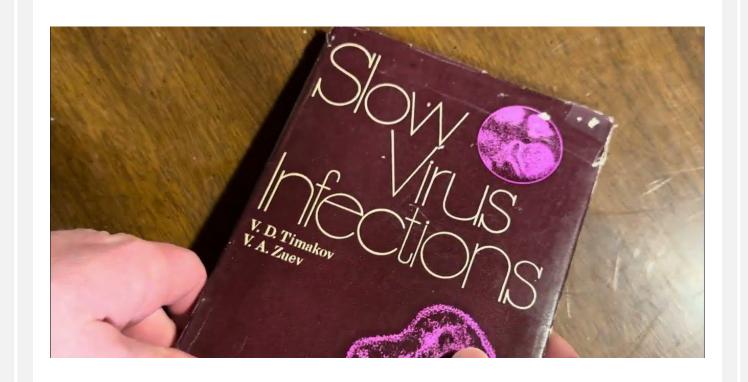
- •lcterus, petechial hemorrhages, subcutaneous edema.
- •Focal necrosis in liver and spleen.
- •Intranuclear inclusion bodies in lung, liver, spleen cells (diagnostic).
- •Foals: may show encephalomyelitis and necrotic vasculitis.

REOVIRUS AND PARVOVIRUS INFECTIONS

- •Reovirus: causes mild or subclinical upper respiratory infection in many species (horse, cattle, dog, cat).
- •May assist in **enzootic pneumonia** as a predisposing factor.
- •Parvovirus: in dogs and cats causes myocarditis and sometimes mild interstitial pneumonia.
- •Other species are not significantly affected in the respiratory system.

RETROVIRUS INFECTIONS

- These infections cause **chronic interstitial pneumonia**, **arthritis**, and **mastitis**.
- Other findings such as encephalitis can also occur.
- Some retroviral diseases show inflammatory-neoplastic changes.


Main Diseases

- Ovine Progressive Pneumonia (Maedi-Visna)
- Caprine Arthritis-Encephalitis (CAE)
- Pulmonary Adenomatosis of Sheep

OVINE PROGRESSIVE PNEUMONIA (MAEDI-VISNA)

Causative Agent:

- Lentivirus, a type C
 fragmented retrovirus.
- It develops slowly and causes long-term infection (called a slow virus infection due to prolonged incubation).

Volume 189 Number 17 CABOT CASE RECORDS 595

Gase Recurds of the Massachusetts General Bospital

EDITED BY RICHARD C. CAROT, M.D., AND HUGH CAROT, M.D.

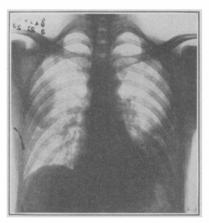
F. M. PAINTER, ASSISTANT EDITOR

ANTE-MORTEM AND POST-MORTEM RECORDS AS USED IN WEEKLY CLINICO-PATHOLOGICAL EXERCISES

CASE 9431

An American student of twenty-four entered March 26, 1923, complaining of pain and

F. H. and P. H. Not recorded.


P. I. On the afternoon of March 23 the patient had a severe cold with moderate headache and backache. He felt quite weak. He stayed in bed until noon next day and remained in his room all day. March 25 he stayed in bed all day and took aspirin, ten grains every four hours. This gave considerable relief to the headache and backache. That afternoon he noted dry unproductive cough for the first time. He felt very weak and thought he had fever. About four o'clock he had a chill that made him shake considerably and hunched him a rea of dullness at left base occupying the costophrenic angle and obscuring the heart apex and diaphragm. The outline of the day of diaphragm below is suggested by the gastric gas bubble seen bediaphragm below is suggested by the gastric gas bubble seen beadmission he awoke with severe pain just below
the ensiform associated with and aggravated by
unproductive cough. Breathing was difficult,
and deep breathing aggravated the pain. A

number of the day of the diaphragm below is suggested by the gastric gas bubble seen bethat it. Upper limit of a dullness in definite and ban out the characteristic position and outline of fluid. In the lung
the characteristic position and outline of fluid. In the lung
ness extending to the lung root, which is increased in size and
thirds of the lung field, most marked in the lower half, are
number of the characteristic position and outline of fluid. In the lung
the characteristic position and outline of fluid. In the lung
the characteristic position and outline of fluid. In the lung
the characteristic position and outline of fluid. In the lung
the characteristic position and outline of fluid. In the lung
the characteristic position and outline of fluid. In the lung
the characteristic position and outline of fluid. In the lung
the characteristic position and outline of fluid. In the lung
the characteristic position and outline of fluid. In the lung
the characteristic position and outline of fluid. In the lung
the characteristic position and outline of fluid. In the lung
the characteristic position and outline of fluid. In the lung
the characteristic position and outline of fluid. In the lung
the characteristic position and outline of fluid. In the lung
the characteristic position and outline of fluid. In the lung
the characteristic position and outline of fluid. In the lung
the characteristic position and outline of fluid. In the lung
the characteristic position and outline of fluid. In the lung
the characteristic position and outline of fluid. In the lung
the characteristic position and outline of the lung fluid the lun physician applied adhesive plaster to his chest with great relief to the pain.

Tonsils absent. Frequent paroxysms of racking in the left base." cough which caused excruciating pain chiefly under the lower sternum, with production of The day after admission Dr. W. H. Smith cept for scar of hernia operation on the left amounts of sputum colored uniformly with

side. Genitals, extremities, pupils and reflexes

T. 103.1°-105.5°, rectal. P. Steadily rising, 92-145. R. 28-58. Urine. 3 24 on the one occasion recorded. Sp. gr. 1.032. No albumin or sugar, two or three leucocytes per high power field and a few hyalin casts. Blood. Hgb. 90%. Leucocytes 14,500-3,700. Polynuclears 79%.

Two blood cultures negative. X-ray. (See illustration.) "The findings are probably due to a P. E. (Because of his condition the exami- pathological process in the lung parenchyma, nation was incomplete and unsatisfactory.) A most marked in the left base. . . . Shadows in fairly well developed and nourished, acutely ill, the remainder of the lung fields are suggestive highly nervous young man wrapped up in sev- of a scattered infectious condition throughout eral blankets, shivering. Breathing rapid, shal- both lungs probably of the same nature as the low, labored, painful. Skin dry and hot. Very denser area noted. There is no evidence of free slight pyorrhea. Throat somewhat injected. fluid, but there may be a small amount of fluid

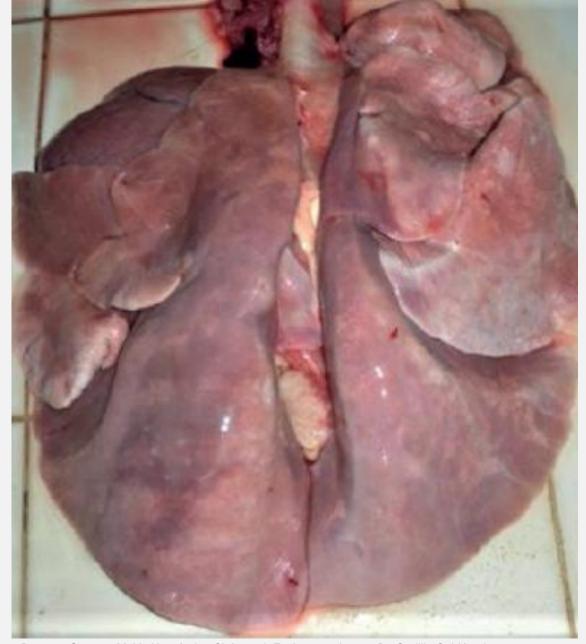
small amounts of pinkish, thick, slightly puru- noted, "Very ill. Dyspnea with pain on inlent sputum. Apex impulse of the heart seen spiration. No focus found for aureus infection. and felt in the fifth space 8 cm. to the left of No costovertebral tenderness. No palpable kidthe midsternum in the midclavicular line. No ney. Abdominal muscles held rigid, probably enlargement to percussion. Sounds rapid, regu- from pleural pain. Two small hyperemic paplar, of good quality. Soft systolic murmur at ules, one on the left palm, the other on the right the apex, not transmitted. Lungs. Expansion index finger. The systolic apical bruit appears greater on the left. Diminished breathing at harmless. . . . At the right base some dullness, the right back from the lower third of the scap- suggesting fluid rather than consolidation. ula down. No definite dullness or change in Serious outlook." That afternoon the house character of breath sounds made out. No rales officer could make out no abnormal signs in the or friction rub heard. Abdomen negative ex- lungs. The patient was raising considerable

OVINE PROGRESSIVE PNEUMONIA (MAEDI-VISNA)

History:

- **Maedi** ("dyspnea" USA, 1923): progressive interstitial pneumonia.
- **Visna** ("wasting" Iceland, 1957): necrotic non-purulent encephalitis.

Later discovered as two forms of the same lentiviral disease.


Associated Conditions (similar to CAE in goats):

- Chronic proliferative arthritis
- Chronic mastitis with lymphoid cell infiltration resembling lymph nodes in mammary tissue.

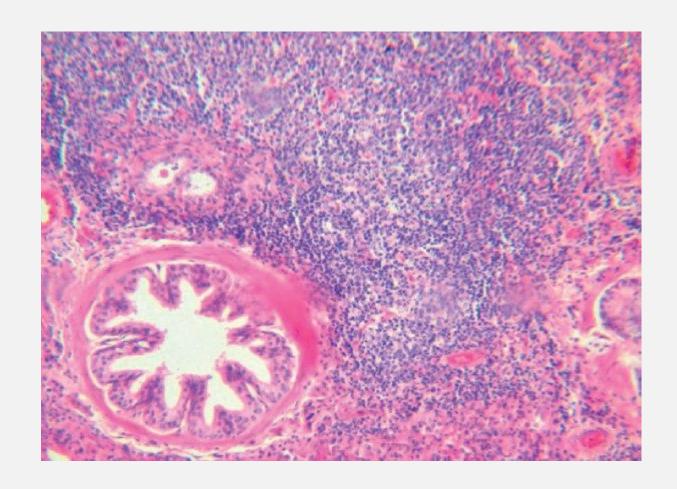
Clinical Findings:

- Endemic disease that progresses slowly.
- Does not occur in animals under 2 years old (long incubation period).
- Dry cough, dyspnea, and weakness are the major signs.

Borquez Cuevas, M. Y., Hernández Chávez, J. F., Armenta Leyva, B., Cedillo Cobián, J. R., & Molina Barrios, R. M. (2021). Ovine Progressive Pneumonia: Diagnosis and Seroprevalence in the South of Sonora, Mexico. *Case reports in veterinary medicine*, 2021(1), 6623888.

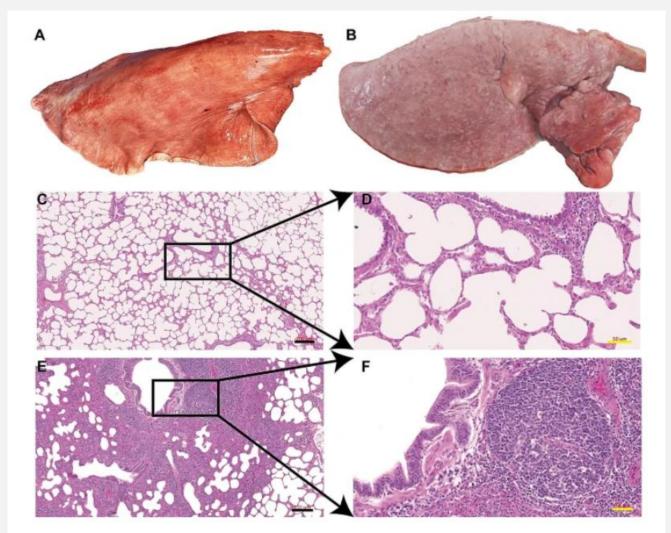
PATHOLOGICAL FINDINGS

Macroscopic Findings:


- Lungs are pale pink, heavy, and have poor collapse.
- Rubbery consistency.
- Lesions mainly in dorsal lung areas.
- On section, there are pin-sized gray-white or gray-red nodules scattered and circumscribed.
- Bronchi contain mucus.
- Regional lymph nodes enlarged.

Gross appearance of ovine progressive pneumonia in the lung of a sheep. The affected lung is enlarged and heavy and has no collapse, with rib impressions on the costal surfaces of the diaphragmatic lobes.

HISTOPATHOLOGICAL FINDINGS


Histopathological Findings:

- Peribronchial and perivascular connective tissue proliferation in the interstitium.
- Infiltration of lymphocytes and mononuclear cells forming lymphoid follicle-like foci.
- Peribronchial lymphoid hyperplasia and smooth muscle hypertrophy in bronchi.
- Fibrosis in interlobular regions.
- Hyperplasia of alveolar type II cells and bronchiolar epithelial cells, especially in alveolar ducts.
- Lymph nodes: chronic lymphadenitis and follicular hyperplasia.

Ovine progressive pneumonia: **peribronchiolar lymphoid hyperplasia** with formation of prominent well-defined lymphoid nodules and **smooth muscle hyperplasia** of the bronchiolar wall (H&E, 100x).

Borquez Cuevas, M. Y., Hernández Chávez, J. F., Armenta Leyva, B., Cedillo Cobián, J. R., & Molina Barrios, R. M. (2021). Ovine Progressive Pneumonia: Diagnosis and Seroprevalence in the South of Sonora, Mexico. *Case reports in veterinary medicine*, 2021(1), 6623888.

Histopathologic characteristics of Maedi-visna virus (MVV)-infected lungs. (A) Overall appearance of the lung from a healthy sheep; (B) appearance of Maedi-visna disease in an infected sheep lung sample; (C and D) microscopic examination of the lung from a healthy sheep (black bar, 200 μ m; yellow bar, 50 μ m); (E and F) microscopic view of MVV-infected lungs (black bar, 200 μ m; yellow bar, 50 μ m)

Shi, X., Zhang, Y., Chen, S., Du, X., Zhang, P., Duan, X., ... & Liu, S. (2024). Differential gene expression and immune cell infiltration in maedivisna virus-infected lung tissues. *BMC genomics*, 25(1), 534.

JAAGSIEKTE (OVINE PULMONARY ADENOMATOSIS)

• Jaagsiekte, also known as **Ovine Pulmonary Adenomatosis (OPA)**, is an **infectious neoplastic disease** of sheep characterized by the development of **bronchioalveolar adenomas or adenocarcinomas**.

The tumors may metastasize to **regional lymph nodes**, and in some cases, to **extrathoracic lymph nodes** and **other organs**.

The neoplastic cells originate mainly from **type II pneumocytes** and partly from **bronchial Clara cells**, therefore they are **cuboidal to columnar in shape** and show **papillary proliferation**.

ETIOLOGY

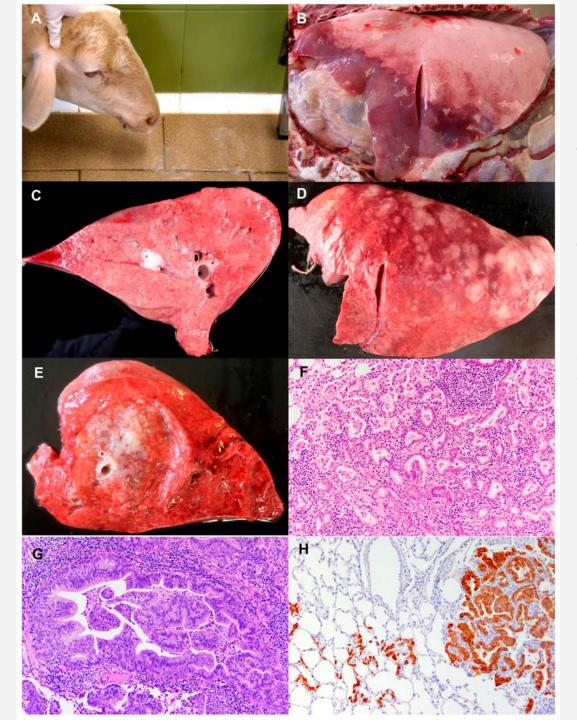
• The causative agent is a **retrovirus of the Lentivirus group**, previously referred to as **Jaagsiekte sheep retrovirus (JSRV)**. (Older texts mention bovine herpesvirus type 4, type B or D, but the true agent is a retrovirus).

CLINICAL FINDINGS

- •The disease has a **chronic course**.
- •It is usually observed in sheep aged **7 months to 10 years**, most commonly around **3 years**.
- •Clinical signs resemble those of **ovine progressive pneumonia** (Maedi-Visna), including:
- Progressive dyspnea,
- Coughing,
- Weight loss and weakness,
- •Increased respiratory effort, especially after exercise.
- •The disease is **progressive and fatal**.

PATHOLOGICAL FINDINGS

Macroscopic Lesions


- The diaphragmatic lobes are the primary predilection site.
- Lesions spread ventrally to the left cardiac and right accessory lobes over time.
- Early stage:
- In the affected areas, soft, grayish-transparent, non-calcified nodules appear, about the size of lentils.
- The intervening lung tissue remains normal.
- Advanced stage:
- The number of nodules increases, and they coalesce to involve the entire lobe.
- The affected regions are dull, porcelain-white, and have a rubbery consistency.
- The normal lung, which normally weighs 300–800 g, may reach up to 3 kg in affected cases.
- When pressed, the cut surface exudes serous fluid.
- In about 4% of cases, metastases occur in the regional lymph nodes.

MICROSCOPIC LESIONS

There are two types of histological changes: neoplastic and non-neoplastic.

Neoplastic Areas

- The tumor exhibits a bronchioalveolar adenoma or adenocarcinoma pattern.
- Alveolar walls are lined by cuboidal or columnar epithelial cells.
- Papillary proliferations develop within some bronchi and alveoli.
- In metastatic cases, lesions may show cystic papillary adenoma-like structures.
- The stroma consists of delicate connective tissue, sometimes showing a myxomatous appearance.
- Lymphocytes and histiocytes may be present around neoplastic foci.

Ovine pulmonary adenocarcinoma (OPA): clinical signs and pathology. (A) Four year old sheep showing OPA clinical signs. When head is lowered, frothy sero-mucous fluid comes from the nostrils and pours over the floor. (B) Post-mortem examination of thoracic cavity. Classical OPA form. Left lung with cranio-ventral areas purple in colour and consolidated. The rest of the lung shows an increase in volume and is lighter in colour. (C) Right caudal lung section. Classical OPA. Lung section showing granular appearance foci and foamy fluid pouring from main airways. (D) Left lung from a sheep showing atypical OPA form. Multiple white nodules of various sizes distributed throughout the lung surface. (E) Section of lung from right caudal lobe. Atypical OPA. Multiple white nodules with various sizes: bigger ones coalescing close to a central main bronchus and others expanding to close lung areas.

- (F) Histopathology of OPA lesion. Alveolar epithelial cells proliferate following a lepidic pattern. Alveolar wall is replaced by cuboidal cells into a tubular or papiliform pattern. Tumour stroma is infiltrated mainly by lymphocytes. Numerous macrophages are filling alveolar lumens in the tumours and in the close areas. Hematoxylin-eosin. 100×. (G) Histopathology of OPA lesion. Bronchiole with epithelium transformed into papiliform growth almost completely filling the lumen. Hematoxylin-Eosin. 100×.
- (H) Immunohistochemistry using a mouse monoclonal **antijaagsiekte sheep retrovirus envelope (JSRV Env) protein. Cellular membranes and cytoplasms of neoplastic cells of a tumour nodule are labelled.** In the adjacent alveoli, positive cells are observed either isolated or in small groups. 100×.

De las Heras, M., Borobia, M., & Ortín, A. (2021). Neoplasia-associated wasting diseases with economic relevance in the sheep industry. *Animals*, *11*(2), 381.

Non-Neoplastic Areas

- Represent changes associated with **desquamative and progressive** interstitial pneumonia.
- Alveolar septa are thickened due to infiltration by mononuclear inflammatory cells, mainly lymphocytes and macrophages.
- Occasional granulocytes may also be found.
- Some alveoli contain edematous fluid, and secondary bacterial infections may occur.

DIFFERENTIAL DIAGNOSIS

- **Verminous pneumonia (lungworm infection)** because of nodular, grayish lung lesions.
- Maedi (Ovine progressive pneumonia) due to similar chronic interstitial and fibrotic lung changes.

However, **Jaagsiekte** can be distinguished by:

- The presence of neoplastic epithelial proliferation (adenomatous or papillary),
- Absence of significant fibrosis,
- Presence of tumor metastasis, and
- Identification of JSRV antigen by immunohistochemical or molecular methods.

EQUINE VIRAL ARTERITIS

- •Caused by **Arteritis Virus** from the **Togaviridae** family.
- •Sometimes called "Pinkeye" or "Thymus disease of horses."
- •Produces **generalized lesions** with **fibrinoid degeneration of small arteries** and **inflammatory infiltration**.
- •Lung edema and, in about 10% of cases, interstitial pneumonia develop.
- •Secondary bacterial infections (e.g., Streptococcus) may lead to necrotic or catarrhal pneumonia.

AUJESZKY'S DISEASE (PSEUDORABIES)

- Caused by Porcine Herpesvirus Type I (Herpesviridae family).
- Main lesions occur in the nervous system, but interstitial pneumonia may also develop.
- In this pneumonia, inflammation is **intra-alveolar**, not peribronchiolar or perivascular.
- Histopathology:
 - Mononuclear and eosinophilic granulocyte infiltration in alveolar septa.
 - Necrosis in interstitial areas may be seen.

OTHER VIRAL INFECTIONS

- Some enteric viruses may also cause pneumonia:
 - Enteroviruses
 - Coronaviruses
 - Parvoviruses (in cats and dogs)
 - BVD/MD viruses (Bovine Viral Diarrhea / Mucosal Disease)
- BVD virus is immunosuppressive, predisposing animals to secondary respiratory infections.

Also Known As:

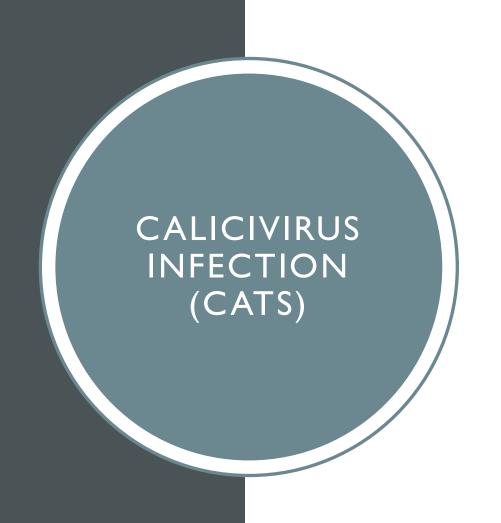
- Infectious Pustular Vulvovaginitis (IPV)
- Necrotic Rhinitis
- Red Nose Disease

Etiology:

Caused by Bovine Herpesvirus-I.

Lesions and Clinical Forms:

- Rhinotracheitis: inflammation and necrosis of nasal and tracheal mucosa.
- Bronchopneumonia
- Conjunctivitis
- Vulvovaginitis and balanoposthitis (inflammation of genital mucosa).
- **Abortion** may occur due to fetal infection.


Pathological Findings:

- Fibrinonecrotic rhinitis, laryngitis, tracheitis.
- Intranuclear inclusion bodies found in respiratory epithelium.
- **Necrotic lesions** in epiglottis, buccal mucosa, gums, vagina, penis, and prepuce.
- Diffuse hemorrhages in aborted fetuses.

Gross Appearance:

- Red nose, nasal discharge, ulcers in oral and genital mucosa.
- In severe cases, necrosis and pustules appear in respiratory and genital tracts.
- Aborted fetuses may show hemorrhages and necrosis in several organs.

- Caused by **Feline Calicivirus**.
- Leads to multifocal ulcerative glossitis and broncho-interstitial pneumonia.
- Often coexists with feline herpesvirus infections as part of the Feline Respiratory Disease Complex.

BOVINE'S OTHER INTERSTITIAL PNEUMONIAS

- In addition to **viral** and **parasitic pneumonias**, there are two other important forms of **interstitial pneumonia** in cattle that differ in their **etiology**.
 - These are categorized according to their duration as acute and chronic interstitial pneumonias.
- Morphologically, interstitial pneumonia includes edema and exudative changes in addition to typical inflammatory lesions.
 - Therefore, these forms are referred to as acute atypical interstitial pneumonia and chronic atypical interstitial pneumonia.
- According to the cause (etiology), these diseases are also grouped under allergic and toxic pneumonias.

This disease is also known as Fog Fever.
 It occurs in cattle grazing on lush pastures
 (after being kept indoors) and is associated with pulmonary edema and emphysema.
 The word "Foggage" means stubble or dry grass remaining after harvest, hence the alternative name Stubble Harvest Fever.

Etiology

• The disease develops due to the **toxic effects of L-tryptophan**, which is converted in the rumen to **3-methylindole**.

Although primarily toxic in nature, it may also involve an **allergic component**.

The inhaled or absorbed toxins cause severe injury to the lung tissue.

- Pathogenesis and Morphology
- The condition is characterized by damage to pneumocyte type II cells,
- Formation of hyaline membranes,
- Atelectasis (collapse of alveoli), and
- Diffuse pulmonary emphysema.
- Because of these changes, this condition is defined as acute atypical interstitial pneumonia.

CHRONIC ATYPICAL INTERSTITIAL PNEUMONIA

- This condition develops as a result of allergic reactions to microbial or fungal antigens present in barn environments.
 It is caused by species such as:
- Actinomyces spp. (especially Micropolyspora faeni and Thermoactinomyces vulgaris)
- Aspergillus spp. (especially Aspergillus fumigatus and Aspergillus niger)
- Because of its allergic basis, it is referred to as "Allergic Pneumonia".
- It is also known by other names:

Bovine Allergic Alveolitis

Bovine Hypersensitivity Pneumonia

Farmer's Lung

FARMER'S LUNG (BOVINE ALLERGIC ALVEOLITIS)

- Occurs in winter, when cattle are housed indoors and fed with moldy or dusty hay.
- The disease results from **inhalation** of microorganisms such as *Micropolyspora* faeni, *Thermoactinomyces vulgaris*, and *Aspergillus* species found in cowhouse bedding and feed.
- The immune response involved is a Type III (immune complex)
 hypersensitivity reaction.

Macroscopic Findings

- The lung volume is increased.
- Lesions may involve entire lobes or large areas of the lung.
- Affected regions appear yellowish, edematous, or elastic in consistency.
- Surrounding areas are emphysematous.
- Bronchial lumens contain yellowish mucus.

Microscopic Findings

- Infiltration of lymphocytes, plasma cells, and eosinophilic granulocytes.
- Bronchiolar obliteration may occur due to inflammation.
- In the <u>interstitial tissue</u>, there are numerous mononuclear cells (macrophages, lymphocytes, plasma cells) and <u>eosinophilic granulocytes</u>.
- Occasionally, multinucleated giant cells are present.
- In chronic cases, fibrocytes and fibroblasts appear, indicating fibrosis.

Morphologically, the lesion resembles ordinary interstitial pneumonia but differs by its **exudative** and **allergic** nature, hence the term **chronic atypical interstitial pneumonia**. Over time, **fibrous tissue proliferation** marks the chronic stage.

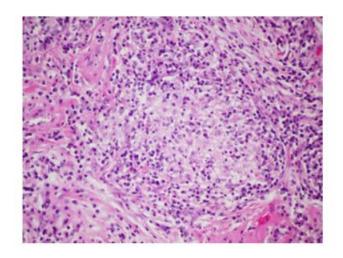


Fig. 4.

Histopathological characteristics in farmer's lung disease. Loose, non-necrotizing granulomas formed by histiocytic aggregates and abundant lymphoplasmacytic infiltrate (hematoxylin-eosin 40x).

Cano-Jiménez, E., Acuña, A., Botana, M. I., Hermida, T., González, M. G., Leiro, V., ... & Sanjuán, P. (2016). Farmer's lung disease. A review. *Archivos de Bronconeumología* (English Edition), 52(6), 321-328.

EQUINE ALLERGIC PNEUMONIA

• This condition in horses is **similar to Farmer's Lung** in cattle. It is also caused by **inhalation of antigens** such as dust, molds, or fungal spores, leading to an **allergic hypersensitivity reaction** in the lungs.

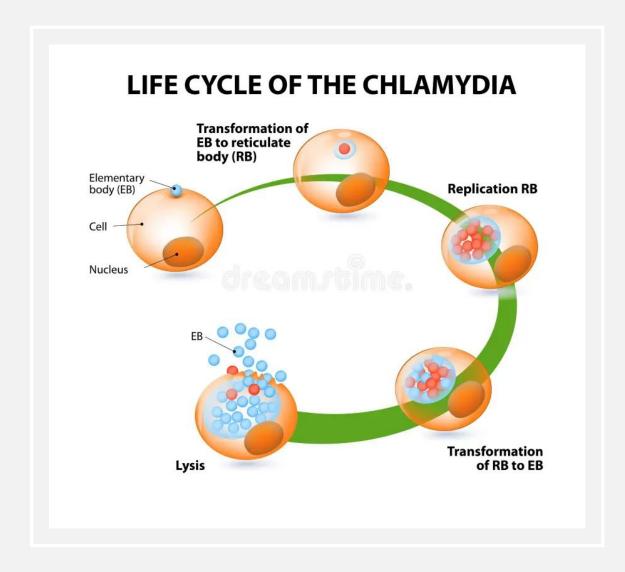
ALLERGIC PNEUMONIA (GENERAL CONCEPT)

Allergic pneumonia occurs due to antigenic substances of plant or animal origin.

These allergens include:

- Dust, pollen, and mold spores
- Insects and helminths
- Bacteria, fungi, and viruses

Examples of diseases caused by this mechanism include:


- Farmer's Lung in cattle
- Equine Pulmonary Emphysema
- Equine Allergic Pneumonitis
- Asthma bronchiale in humans
- **Dictyocaulus viviparus** infection in cattle (as a hypersensitivity response)
- These pneumonias are etiologically allergic but morphologically interstitial, often showing:
- Eosinophilic granulocyte infiltration, and
- Various types of pulmonary emphysema.

CHLAMYDIOSIS

General Information

- Chlamydia psittaci has a wide host spectrum, affecting both avian and mammalian species, including humans.
 Unlike ordinary bacteria, it multiplies in tissue cultures and embryonated chicken eggs.
 It contains both DNA and RNA, and although it stains like Gram-negative bacteria, it differs in structure and reproduction.
- During multiplication, the organism forms distinct bodies within the host cell.

- Chlamydia pneumoniae is a small gramnegative bacterium with two main forms in its life cycle.
- The elementary body (EB) is the inactive but infectious form that survives outside the host and spreads through droplets to the lungs. Inside host cells, the EB enters an endosome and transforms into a reticulate body (RB), which uses host cell metabolism to multiply.
- The RBs then revert to EBs, which are released when the host cell dies, allowing infection of new cells or new hosts. Thus, EBs infect, while RBs replicate.

•Life cycle:

- Elementary body (EB): infectious, metabolically inactive, spore-like
- Reticulate body (RB): non-infectious, metabolically active, replicative form (seen only within host cells)

PATHOGENESIS AND HISTOPATHOLOGY

Chlamydial organisms are often found in trophoblastic cells of the sheep fetus.

Clinical findings are nonspecific.

• In domestic animals, infection generally causes chronic broncho-interstitial pneumonia. However, secondary bacterial infections may lead to catarrhal-purulent bronchopneumonia.

Histologically:

- The interstitial areas show lymphoplasmacytic infiltration, forming focal lymphoid follicle-like structures.
- Type II pneumocytes are hyperplastic.
- In bronchi and alveoli, exudate containing neutrophilic leukocytes is common.
- The agent can be demonstrated using special stains or immunohistochemical methods (e.g., immunofluorescence).

INFECTION IN DOMESTIC ANIMALS

Cattle, sheep, and goats:

- Isolated from cases of enzootic pneumonia.
- May also cause enteritis.

In calves:

- Similar pulmonary lesions occur, accompanied by:
 - Polyarthritis (joints of limbs, vertebrae, and mandible),
 - Meningoencephalomyelitis, and
 - Perisplenitis.

In cows:

• Causes abortion, resulting from placental infection, usually at 7–8 months of gestation.

Fetal findings:

- Subcutaneous edema,
- Increased pleural and peritoneal fluid,
- Swollen lymph nodes,
- Splenomegaly,
- **Petechiae** on oral mucosa, conjunctiva, larynx, and trachea,
- Loose nodules in the liver.

In sheep:

- Similar to cattle.
- Causes follicular conjunctivitis.

In foals (horses):

Causes polyarthritis.

In dogs:

• Leads to polyarthritis, hepatic necrosis, lymph node and splenic reticuloendothelial (RES) hyperplasia, and leptomeningitis.

In cats:

• Produces chronic conjunctivitis, rhinitis, and subclinical broncho-interstitial pneumonia.

In rabbits:

Causes enzootic pneumonia.

In Birds

- Known as Psittacosis or Ornithosis.
- Most common in pigeons, often latent (subclinical).
- The disease becomes active under stress, such as during:
 - The molting period of young birds,
 - **Transportation**, or
 - Poor environmental conditions.
- Transmission occurs via inhalation of dust containing infected feces.

Lesions in birds:

- Rhinitis,
- Firm areas in the lungs,
- Enlarged liver with yellowish-brown foci,
- These are generally nonspecific lesions.

In Humans

- The disease occurs most often in people who have close contact with birds, such as bird breeders, hence the name "Bird Fancier's Disease."
- It also affects poultry farm and slaughterhouse workers.
- Transmission:
- Mainly by inhalation of dust containing dried feces of infected birds.
- It can also spread through sputum of infected persons.
- Incubation period: approximately 20 days.

Clinical Course in Humans

- Mild cases:
- Sudden onset of fever, sore throat, fatigue, photophobia, and severe headache (flu-like symptoms).
- Recovery occurs within a few days.
- Severe cases:
- May develop atypical interstitial pneumonia and typhoid-like enteritis.
- Sometimes fatal, particularly in elderly patients, with a mortality rate up to 20%.