General Arthropodology

MEDİCAL IMPORTANCE OF ARTHROPODS

Indirect Impacts

- **■** Transmit of Vector-Borne Diseases
- A) Mechanical Vector
- Transmit by biting
- Transmit by contact
- B) Biological Vector
- Transmit by biting (blood feeding)
- Transmit by swallowed vector

MEDİCAL IMPORTANCE OF ARTHROPODS

- Transmit of vector-borne diseases.
 - Some arthropods transmit bacteria, virus, protozoa, helminthes and fungus to humans and animals
 - There are many arthropod borne diseases.
 - Blood feeding arthropods.
- Vector
 - A) Mechanical Vector
 - B) Biological Vector

Mechanical Vector

- A vector that conveys pathogens to a susceptible individual without essential biological development of the pathogens in the vector.
- No developmental processes
- No production
- There are two type mechanical vectors.
 - Transmit by biting
 - Transmit by contact

Mechanical Vector Transmit by biting

- Blood feeding arthropods.
 - Transmission occur during blood feeding
 - For example;
 - Tabanus- Trypanasama evansi
 - 24 hours is important

Mechanical Vector Transmit by contact

- No blood-feeding
- Transmission occur by contact
- Carried by foot, wing, mouth parts.
 - House flies
 - Cockroaches

Biological Vector

- An arthropod vector in whose body the infecting organisms develops or multiplies before becoming infective to the recipient individual.
- There are two type.
 - Transmit by biting (blood feeding)
 - Transmit by swallowed vector

Biological Vector Transmit by biting (blood feeding)

- Blood-feeding arthropods
- Vectors
 - Producer
 - The organism replicates in the vector, but does not change shape.
 - For example; Plague-flea
 - Developer
 - The number does not increase, but the shape changes.
 - Elephantiasis (*Wuchereria bancrofti*)- mosquitoes
 - Both producer and developer
 - Both the organizm replicates in the vector and the shape changes.
 - Plasmodium- Anopheles
 - Trypanosoma-Glossina

Biological Vector Transmit by swallowed vector

- Transmission occurs by swallowed arthropod vectors.
 - Hepatozoon canis-Rhipicephalus sanguineus
 - Diphilidium caninum and Hymenalepis dimunuta-flea

Transmission routes

- Salivarian transmission
- Stercorarian transmission
- Regurgitation transmission
- Swallowing transmission
- Contact transmission

Other medical fields which arthropods are used

- Honey-bee products (Honey, pollen, propolis) is used in treatment of many diseases.
- Maggot therapy
 - Unhealed wounds (eg. diabetes)
 - Lucilia serricata
- Forensic Entomology
 - Determining the time of death.

- A part of arthropods have evolved as completely parasitic life.
- Some have evolved as completely non-parasitic life.
- Infestation?
- Host?
- Arthropod-Arthropod parasite
 - *Varroa destructor*-honey bee
 - Super parasitism
 - Mite (*Macrocheles muscadomestica*)-Black fly

- Obligate parasitism
 - An obligate parasite is a parasitic organism that cannot complete its life-cycle without exploiting a suitable host.
 - Ticks,
 - Fleas
 - Mosquitoes
 - Lice
 - Scabies mites

- Permanent obligate parasitism
 - Scabies mite
 - Lice
- Temporary obligate parasitism
 - Flea
 - Tick
 - Mosquito

- Facultative parasitism
 - An organism that lives independent of a host but may occasionally be parasitic under certain conditions.
 - Wound myiasis
 - Sarcophoga larvae
 - Wohlfahrtia larvae

- Only larval stage parasitism
 - Oestrus ovis
 - Gastrophilus
 - Hypoderma
- Only adult stage parasitism
 - Mosquitoes
 - Fleas

- Monoxen parasites-Only one host
 - Scabies mite
 - Lice
- Heteroxene parasites- More than one host
 - Ticks
 - One-host ticks (Rhipicephalus annulatus)
 - Two-host ticks (Hyalomma marginatum)
 - Three-host ticks (*Ixodes ricinus*)

- Some parasitic arthropods are specific to one host.
 - *Gastrophilus* Equidae,
 - Hypoderma bovis -Cattle
 - Oestrus ovis -Sheep
- Some do not prefer specific host and use many host.
 - Flea
 - Some ticks
 - e.g. *Ixodes ricinus* can fed from more than 200 hosts.

STRUGGLE WITH ARTHROPODS

- The ways to fight against parasites have been standardized by WHO (World Health Organization)
- To control arthropods;
 - to remove breeding and feeding places
 - Or to eliminate certain life stages of parasites
- The following types of methods are used to fight arthropods.
 - Cultural struggle
 - Mechanical physical struggle
 - Biological struggle
 - Chemical struggle

Cultural struggle

- Environmental cleaning
- Appropriate reconstruction
- Infrastructure and drainage
- Regular removal of feces
- Trash cleaning

Mechanical physical struggle

- This method is mostly respectful to the environment.
 - Grooming of animals
 - Removing or collecting of few amount of parasites
 - Fly lines
 - Fan (ventilator)
- For example; For argasid ticks, to use of nylon or tin to walls
 - Argasids can not climb to the flat

Biological struggle

- This method is also respectful to the environment
- Can be carried out in various forms
 - Sterilizing of arthropods
 - Use of radiation
 - Stop the developmental stages of arthropods
 - Inhabit of chitinizations
 - Use of natural predators!
 - Bacillus thuringiensis
 - Some fish for mosquito larvae
 - Removal of suitable hosts

Chemical struggle

- Pest: Pest are living organisms that occur where they are not wanted or that cause damage to crops or humans or other animals.
 - Weed
 - Arthropod
 - Mice etc.
- **Pesticide:** A pesticide is any substance or mixture of substances intended for preventing, destroying, repelling, or mitigation any pest.
 - Used pesticide:
 - 75% in agriculture
 - 15% in farming
 - 10% in humans

Chemical struggle

- Chemicals must be preferred as a last resort for eleminate of arthropods and must be used in obligatory situations.
- Must be used in a conscious way,
- Otherwise, It must not be forgotten that the unconscious use of chemicals may result in irreversible damage in short or long term.
- Most of Pesticides;
 - Teratogen
 - Mutagen
 - Carcinogenic
- Can also remove beneficial arthropods in nature.
- Resistance is also important issue.

Classification of Pesticides

- -cide
 - İnsecticide: for insects
 - Acaricide: for mite (acar)
 - Fungucide: for fungus
 - Avicide: for birds
 - Herbicide: for weed (wild herb)

Classification of Pesticides According to the effect way

- Respiratory poisons
- Contact poisons
- Systemic poisons
- Repellents
- Stomach poisons

Classification of Pesticides According to life stage of arthropods

- Ovicide: Effective for eggs
- Larvaecide: Effective for larvae.
- Pupicide: Effective for pupa
- Adulticide: Effective for adults

Classification of Pesticides According to the application methods

- Pour-on
- Spot-on
- Powder
- Bath
- Spray
- Ear tag or leash
- Feed additive

Classification of Pesticides According to the chemical structure

- Synthetic Organic Matters: Organic phosphorus, karbomat, Organic chlorinated, tiasianat, nitrofol, formamidin (amitraz) etc.
- Inorganic Matters: As, Pb, Hg, etc.
- Herbal Procusts and synthetics: Pyrethrin, Pyrethroids, rotenon etc.
- Microbial: Avermectins (ivermectin, doramectin etc.)
 - Bacillus thurungiensis israiliensis and Bacillus sphericus

THE CLASSIFICATION TERMS OF ARTHROPODS

Phylum Spesific name.

Subphylum Spesific name.

Class: "ea"

Order: "ida"

Suborder "ina"

Upper-family "dea"

Family "idae"

Sup-family "inae"

Genus Spesific name. Hylomma

Species Spesific name. Hylomma marginatum