CHM 101 Introduction

Reference:

General Chemistry

Principles and Modern Applications TENTH EDITION, **Pearson Canada** Toronto **Matter-Its Properties and Measurement**

- The scope of Chemistry
- The Scientific Method
- Poperties of Matter
- Classification of Matter
- Measurement of Matter (SI Units)

The Scope of Chemistry

- Everything is made up of chemicals, and much of what we do with things involve chemical reactions.
- The gasoline that fules our automobiles is a mixture of different chemicals. The burning of this mixture provides the energy that propels the automobile.

- Chemistry is sometimes called the "cental science" because it relates to many areas of human endeavor and curiosity.
- Chemicals who develop new materials to improve electronic devices such as; solar cells, transistors, fiber optic cables work at the interfaces of chemistry with physics and engineering.

The Scientific Method

- Originated in 17th century with such people as Galileo, Francis Bacon, Isaac Newton.
- The scientific method is the combination of observations, experimentation and the formulations of laws, hypotheses and theories.
- Many discoveries (X-Ray, radioactivity, penicilin) have been made by accident.
- Such chance discoveries are referred to serendipity.

Properties of Matter

- Matter is anything that occupies space, displays a property known as mass and possesses inertia.
- Composition refers to the parts or components of a sample of matter and their relative proportions. Ordinary water is made up of two simpler substances ; hydrogen and oxygen.
- A chemist would say that the composition of water is 11.19% hydrogen and 88.81% oxygen by mass.

- Properties of matter are generally grouped into two broad categories: pyhsical and chemical.
- *A physical property* is one that a sample of mater displays without changing its composition. Copper can be hammered into thin sheet or foil.
- When liquid water freezes into solid water (ice), it certainly looks different in many ways it is different. But , it remains 11.19% hydrogen and 88.81% oxygen by mass.

- In a chemical change or chemical reaction, one or more samples of matter are converted to new samples with different compositions.
- The key to identifying chemical change, then, comes in observing a change in composition.
- The burning of paper involves a chemical change. Paper is a complex material, but its principal components are carbon, hydrogen and oxygen.
- The chief products of the combustion are two gases, carbon dioxide and water as stream.

Classification of Matter

- Matter is built up from very tiny units called atoms.
- A chemical element is a substance made up of only a single type of atom (118 known elements)
- Chemical compounds are substances in which atoms of different elements are combined with one another. (millions of different chemical compunds)
- A molecule is the smallest entitiv having the same proportions of the constituent atoms.
- Homegeneous mixtures are uniform in compositions and properties throughout a given sample, but the composition and properties may vary from one sample to another. (Seawater, cane sugar in water)

Measurement of Matter : SI Units

Physical quantity	Name of SI unit	Symbol
Length	metre	m
Area	square metre	m ²
Volume	cubic metre	m ³
Time	second	s
Velocity	metres per second	ms ⁻¹
Acceleration	metres per square second	ms ⁻²
Concentration	moles per cubic metre	mol m ⁻³
Density	kilograms per cubic metre	kg m ^{−3}
Temperature	kelvin	к
Pressure	pascal	Pa
Electric charge	coulomb	С
Electric current	ampere	A
Electric potential difference	volt	V
Electric field strength	volts per metre	V m ⁻¹
Electric resistance	ohm	Ω
Electric capacitance	farad	F
Wavelength	metre	m

SI PREFIXES		
Multiple or Submultiple	Prefix	Symbol
1018	exa	E
10 ¹⁵	peta	Р
1012	tera	Т
10 ⁹	giga	G
10 ⁶	mega	М
10 ³	kilo	k
10 ²	hecto	h
10	deca	da
10 ⁻¹	deci	d
10-2	centi	c
10-3	milli	m
10 ⁻⁶	micro	mu
10 ⁻⁹	nano	n
10 ⁻¹²	pico	Р
10 ⁻¹⁵	femto	f
10-18	atto	a