CHM 101 Radioactivity

Reference:

General Chemistry

Principles and Modern Applications TENTH EDITION, Pearson Canada Toronto

Content

- Radioactivity
- Naturally Occurring Radioactive Isotopes
- Nuclear Reactions and Artificially Induced Radioactivity
- Rate of Radioactive Decay
- Nuclear Stability
- Nuclear Fission
- Nuclear Fusion

Background

- Traditional Chemistry
 - Reactions occur due to interactions between valence electrons (surrounding nucleus)
- Late 1800s Early 1900s \rightarrow New Developments
 - Discovery that Uranium emits radiation (Henry Becquerel)
 - Amount of radiation emitted is proportional to amount of element present (Marie Curie)
 - "Radioactive" substances = radiation-emitting (Curie)
 - Radioactivity = a inherent property of certain ATOMS, as opposed to a chemical property of compounds (Curie)
- Birth of nuclear chemistry

The Discovery of Radioactivity (1895 – 1898):

- Rountgen found that invisible rays were emitted when electrons hit the surface of a fluorosent screen (discovered x-rays)
- Becquerel accidently discovered that phosphorescent uranium rock produced spots on photographic plates

The Discovery of Radioactivity (1895 – 1898):

- Marie and Pierre Curie isolated the components (uranium atoms) emitting the rays.
- Radioactivity process by which atoms give off rays or particles.
- Radiation the penetrating rays and particles emitted by a radioactive source.

The Discovery of Radioactivity (1895 – 1898):

Marie Curie, continued

- identified 2 new elements, Polonium and Radium on the basis of their radioactivity.
- These findings contradicted Dalton's theory of indivisible atoms.

Chemical vs. Nuclear Reactions

Chemical Reactions	Nuclear Reactions
Bonds are broken	Nuclei emit particles and/or rays
Atoms are rearranged	Atoms change into atoms of different element
Involve valence electrons	Involve protons, neutrons, and/or electrons
Small energy changes	Large energy changes
Reaction rate can be changed.	Reaction rate cannot be changed

- Isotopes atoms of the same element with different numbers of neutrons.
- Radioisotopes isotopes of atoms with unstable nuclei (too many or too few neutrons).
- Radioactive decay when unstable nuclei lose energy by emitting radiation to become more stable

Nuclear Stability

- How can a stable nucleus exist?
 - Net positive charge in nucleus surrounded by negative charges (electrons)
 - Electrostatic force
 - Opposite charges attract
 - Like charges repel
 - -Why doesn't the nucleus break apart?

• Nuclear Force (1934)

- Force between protons and neutrons than binds nucleus together within atom
- -Very strong (must be!)

Which Elements/Isotopes Are Radioactive?

- Based on the nuclear force and nuclear stability
 - More protons in nucleus → more neutrons needed to bind nucleus together
 - Critical Factor = <u>Neutral-to-Proton Ratio</u>
 - Neutron-to-Proton ratios of stable nuclei increase with increasing atomic number
 - Unstable neutron-to-proton ratio = **<u>RADIOACTIVE</u>**
 - Nuclei with **atomic numbers ≥ 84** = ALWAYS Radioactive
 - Very large nuclei!
 - Neutron-to-proton ratio always unstable

Spontaneous Nuclear Reactions

Radiation and Radioactive Decay

- Unstable (radioactive) nuclei emit radiation (energy) in order to become more stable
- <u>Radioactive Decay</u> occurs when a nucleus spontaneously decomposes in this way
- 3 Common Types of Nuclear Reactions
 - Alpha Radiation
 - Beta Radiation
 - Gamma Radiation

Alpha radiation

- Composition Alpha particles, same as helium nuclei
- Symbol Helium nuclei, ${}^{4}_{2}$ He, α
- Charge 2+
- Mass (amu) 4
- Approximate energy 5 MeV
- Penetrating power low (0.05 mm body tissue)
- Shielding paper, clothing

Alpha Radiation: Nuclear Equation

- Emission of 2 protons and 2 neutrons (as an <u>alpha particle</u>, 4_2He) from radioactive atom's nucleus
- Atom's atomic mass decreases by 4 units
- Atom's atomic number decreases by 2 units (a different element!)

Beta radiation

- Composition Beta particles, same as an electron
- Symbol e^{-} , ${}^{0}_{-1}\beta$
- Charge 1-
- Mass (amu) 1/1837 (practically 0)
- Approximate energy 0.05 1 MeV
- Penetrating power moderate (4 mm body tissue)
- Shielding metal foil

Beta negative Radiation: Nuclear Equation

$$^{A}_{Z}X \longrightarrow ^{A}_{Z+1}Y + ^{0}_{-1}e$$

- Conversion of a neutron into a proton and an electron, followed by the emission of the electron (<u>beta particle</u>) from the nucleus
- Atom's atomic mass does NOT change
- Atom's atomic number increases by 1 units (<u>a different element!</u>)

Gamma radiation

- Composition High-energy electromagnetic radiation
- Symbol ^o_oγ
- Charge <mark>0</mark>
- Mass (amu) <mark>0</mark>
- Approximate energy 1 MeV
- Penetrating power high (penetrates body easily)
- Shielding lead, concrete

Review

Type of Radioactive Decay	Particle Emitted	Change in Mass #	Change in Atomic #
Alpha	$\alpha {}_{2}^{4}He$	-4	-2
Beta	$\beta _{-1}^{0}e$	0	+1
Gamma	γ	0	0

Relative Penetrating Power of Radiation Types

- Alpha radiation has low energy and little penetrating power compared to beta radiation
- Gamma has the most energy and penetrating power

Half-Life

- Half time is the time required for half of a radioisotope's nuclei to decay into its products.
- For any radioisotope,

# of ½ lives	% Remaining
0	100%
1	50%
2	25%
3	12.5%
4	6.25%
5	3.125%
6	1.5625%

Different Elements \rightarrow Different Half-Lives

Half-Life

initial mass $m_t = m_0^{\prime} x (0.5)^n$ mass remaining of half-lives

Stimulated Nuclear Reactions

Nuclear Fission

- Fission-splitting of a nucleus
- Very heavy nucleus is split into two approximately equal fragments.
- Chain reaction releases several neutrons which split more nuclei
- If controlled, energy is released slowly (like in nuclear reactors) Reaction control depends on reducing the speed of the neutrons (increases the reaction rate) and absorbing extra neutrons (decreases the reaction rate).

Nuclear Fusion

- - Fusion: Combining of two nuclei
- - Two light nuclei combine to form a single heavier nucleus
- Does not occur under standard conditions (positive nuclei repel each other)
- Advantages compared to fission No radioactive waste, inexpensive
- Disadvantages requires large amount of energy to start, difficult to control
- Examples energy output of stars, hydrogen bomb, future nuclear power plants