## Introduction

#### Reference:

#### **General Chemistry**

Principles and Modern Applications TENTH EDITION,

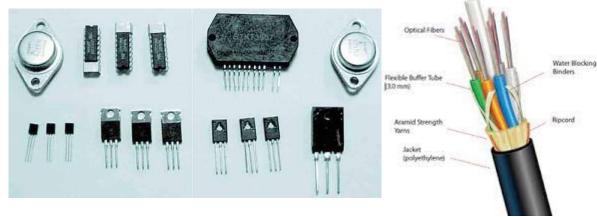
**Pearson Canada** 

**Toronto** 

#### Matter-Its Properties and Measurement

- The scope of Chemistry
- The Scientific Method
- Poperties of Matter
- Classification of Matter
- Measurement of Matter (SI Units)

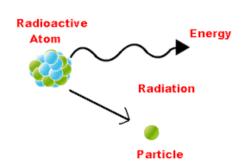
# The Scope of Chemistry


- Everything is made up of chemicals, and much of what we do with things involve chemical reactions.
- The gasoline that fules our automobiles is a mixture of different chemicals. The burning of this mixture provides the energy that propels the automobile.





- Chemistry is sometimes called the "cental science" because it relates to many areas of human endeavor and curiosity.
- Chemicals who develop new materials to improve electronic devices such as; solar cells, transistors, fiber optic cables work at the interfaces of chemistry with physics and engineering.






### The Scientific Method

- Originated in 17th century with such people as Galileo, Francis Bacon, Isaac Newton.
- The scientific method is the combination of observations, experimentation and the formulations of laws, hypotheses and theories.
- Many discoveries (X-Ray, radioactivity, penicilin) have been made by accident.
- Such chance discoveries are referred to serendipity.



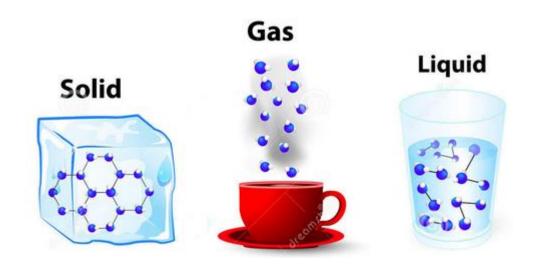


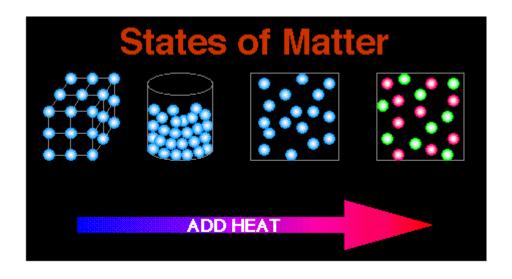


## Properties of Matter

- Matter is anything that occupies space, displays a property known as mass and possesses inertia.
- Composition refers to the parts or components of a sample of matter and their relative proportions. Ordinary water is made up of two simpler substances; hydrogen and oxygen.
- A chemist would say that the composition of water is 11.19% hydrogen and 88.81% oxygen by mass.

- Properties of matter are generally grouped into two broad categories: pyhsical and chemical.
- A physical property is one that a sample of mater displays without changing its composition. Copper can be hammered into thin sheet or foil.
- When liquid water freezes into solid water (ice), it certainly looks different in many ways it is different. But, it remains 11.19% hydrogen and 88.81% oxygen by mass.




- In a chemical change or chemical reaction, one or more samples of matter are converted to new samples with different compositions.
- The key to identifying chemical change, then, comes in observing a change in composition.
- The burning of paper involves a chemical change. Paper is a complex material, but its principal components are carbon, hydrogen and oxygen.
- The chief products of the combustion are two gases, carbon dioxide and water as stream.

#### Classification of Matter

- Matter is built up from very tiny units called atoms.
- A chemical element is a substance made up of only a single type of atom (118 known elements)
- Chemical compounds are substances in which atoms of different elements are combined with one another. (millions of different chemical compunds)
- A molecule is the smallest entity having the same proportions of the constituent atoms.
- Homegeneous mixtures are uniform in compositions and properties throughout a given sample, but the composition and properties may vary from one sample to another. (Seawater, cane sugar in water)





## Measurement of Matter: SI Units

| Table 1.3.1: Commonly used physical quantities and units in SI |                           |                        |  |
|----------------------------------------------------------------|---------------------------|------------------------|--|
| Physical quantity                                              | Name of SI unit           | Symbol                 |  |
| Length                                                         | metre                     | m                      |  |
| Area                                                           | square metre              | m <sup>2</sup>         |  |
| Volume                                                         | cubic metre               | $m^3$                  |  |
| Time                                                           | second                    | s                      |  |
| Velocity                                                       | metres per second         | ms <sup>-1</sup>       |  |
| Acceleration                                                   | metres per square second  | ms <sup>-2</sup>       |  |
| Concentration                                                  | moles per cubic metre     | mol m <sup>-3</sup>    |  |
| Density                                                        | kilograms per cubic metre | ${\rm kg}{\rm m}^{-3}$ |  |
| Temperature                                                    | kelvin                    | K                      |  |
| Pressure                                                       | pascal                    | Pa                     |  |
| Electric charge                                                | coulomb                   | C                      |  |
| Electric current                                               | ampere                    | Α                      |  |
| Electric potential difference                                  | volt                      | V                      |  |
| Electric field strength                                        | volts per metre           | $V m^{-1}$             |  |
| Electric resistance                                            | ohm                       | Ω                      |  |
| Electric capacitance                                           | farad                     | F                      |  |
| Wavelength                                                     | metre                     | m                      |  |

| SI PREFIXES                |        |        |  |
|----------------------------|--------|--------|--|
| Multiple or<br>Submultiple | Prefix | Symbol |  |
| 1018                       | exa    | Е      |  |
| 10 <sup>15</sup>           | peta   | P      |  |
| 1012                       | tera   | Т      |  |
| 109                        | giga   | G      |  |
| 10 <sup>6</sup>            | mega   | М      |  |
| 10 <sup>3</sup>            | kilo   | k      |  |
| 10 <sup>2</sup>            | hecto  | h      |  |
| 10                         | deca   | da     |  |
| 10-1                       | deci   | d      |  |
| 10-2                       | centi  | С      |  |
| 10-3                       | milli  | m      |  |
| 10-6                       | micro  | mu     |  |
| 10-9                       | nano   | n      |  |
| 10-12                      | pico   | p      |  |
| 10-15                      | femto  | f      |  |
| 10-18                      | atto   | a      |  |