References:

- W.L. McCabe, J.C. Smith, P. Harriott., Unit Operations of Chemical Engineering, McGraw Hill, N.Y., (7th Ed.) 2005
- J.P. Holman, Heat Transfer, McGraw-Hill, N.Y., 1989.
- F.P. Incropera, D.P. de Witt, Fundamentals of Heat and Mass Transfer, John Wiley \& Sons, N.Y., (3th Ed.) 1990.
- C.J. Geankoplis, Transport Processes and Unit Operations, Prentice-Hill Inc., N.J., (3th Ed.) 1993
- Y. Cengel , Introduction to Thermodynamics and Heat Transfer , , McGraw Hill, 2nd Edition 2008

10. Heating and cooling of fluids in forced convection outside tubes:

Cross-flow over a cylinder

$\mathrm{T}_{\infty}=30^{\circ} \mathrm{C}, \quad \mathrm{T}_{\mathrm{w}}=324^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{f}}=\frac{\mathrm{T}_{\mathrm{w}}+\mathrm{T}_{\infty}}{2}=\frac{324+30}{2}=177^{\circ} \mathrm{C}=450 \mathrm{~K}$
Physical properties of air at 450 K (Table 5) : $\rho=0.7833 \mathrm{~kg} / \mathrm{m}^{3}$

$$
\begin{aligned}
& \mu=2.484 \times 10^{-5} \mathrm{~kg} / \mathrm{ms} \\
& \mathrm{k}=0.03707 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C} \\
& \operatorname{Pr}=0.683
\end{aligned}
$$

$\frac{\mathrm{hD}}{\mathrm{k}}=\mathrm{c}\left(\frac{\mathrm{D}_{\mathrm{o}} \mathrm{V}_{\infty} \rho_{\mathrm{f}}}{\mu_{\mathrm{f}}}\right)^{\mathrm{n}} \operatorname{Pr}^{1 / 3}$
$\operatorname{Re}_{f}=\frac{D_{o} V_{\infty} \rho_{f}}{\mu_{f}}=\frac{3 \times 10^{-3} \mathrm{~m} \times 6 \mathrm{~m} / \mathrm{s} \times 0.7833 \mathrm{~kg} / \mathrm{m}^{3}}{2.484 \times 10^{-5} \mathrm{~kg} / \mathrm{ms}}=567$
$\operatorname{Re}_{\mathrm{f}}=567($ range $40-4000) \quad \mathrm{c}=0.683 \mathrm{n}=0.466 \quad$ (from Table 12)
$\frac{\mathrm{h} \times 3 \times 10^{-3} \mathrm{~m}}{0.03707 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}}=0.683(567)^{0.466}(0.683)^{1 / 3}=11.54 \rightarrow \mathrm{~h}=142.66 \frac{\mathrm{~W}}{\mathrm{~m}^{2 \circ} \mathrm{C}}$
$\mathrm{q}=\mathrm{h} * \mathrm{~A} *\left(\mathrm{~T}_{\mathrm{w}}-\mathrm{T}_{\infty}\right)$
$\mathrm{q}=\mathrm{h} * \pi \mathrm{D} L *\left(\mathrm{~T}_{\mathrm{w}}-\mathrm{T}_{\infty}\right)$
$\frac{\mathrm{q}}{\mathrm{L}}=\mathrm{h} * \pi \mathrm{D} *\left(\mathrm{~T}_{\mathrm{w}}-\mathrm{T}_{\infty}\right)=142.66 \frac{\mathrm{~W}}{\mathrm{~m}^{2{ }^{\circ} \mathrm{C}} * \pi * 3 \times 10^{-3} \mathrm{~m} *(324-30)^{\circ} \mathrm{C}, \mathrm{C}}$
$\frac{\mathrm{q}}{\mathrm{L}}=395.3 \frac{\mathrm{~W}}{\mathrm{~m}}$

Example:

An in-line arrangement cross flow heat exchanger is set up 6 rows parallel to the flow and 4 rows normal to the flow. $\mathrm{L}=15.24 \mathrm{~m} \mathrm{D}=0.0064 \mathrm{~m}$ and $\mathrm{Sn}=\mathrm{Sp}=0.0192 \mathrm{~m}$. $\mathrm{Tw}=93.3^{\circ} \mathrm{C}$. Atmospheric air, velocity of $4.57 \mathrm{~m} / \mathrm{s}$, is heated in the system

$$
\begin{aligned}
& \overline{\mathrm{T}}=21.1^{\circ} \mathrm{C} \\
& \mathrm{~T}_{\mathrm{f}}=\frac{\mathrm{T}_{\mathrm{w}}+\overline{\mathrm{T}}}{2}=\frac{93.3+21.1}{2}=57.2^{\circ} \mathrm{C}=330.2 \mathrm{~K}
\end{aligned}
$$

The properties of air at 330.2 K by interpolation:
$\rho_{\mathrm{f}}=1.0656 \mathrm{~kg} / \mathrm{m}^{3}$
$\mu_{\mathrm{f}}=1.9844 \times 10^{-5} \mathrm{~kg} / \mathrm{m} . \mathrm{s}$
$\mathrm{k}_{\mathrm{f}}=0.02853 \mathrm{~W} / \mathrm{m} .{ }^{\circ} \mathrm{C}$
$\mathrm{C}_{\mathrm{p}}=1.0077 \mathrm{kj} / \mathrm{kg} .{ }^{\circ} \mathrm{C}$

$$
\operatorname{Pr}=0.701
$$

$\vartheta_{\text {max }}=\vartheta_{\infty} \frac{\mathrm{S}_{\mathrm{n}}}{\mathrm{S}_{\mathrm{n}}-\mathrm{D}}=4.57 \frac{0.0192}{0.0192-0.0064}=6.86 \mathrm{~m} / \mathrm{s}$
$\operatorname{Re}=\frac{\mathrm{D} \vartheta_{\max } \rho}{\mu}=\frac{0.0064 \times 6.86 \times 1.0656}{1.9844 \times 10^{-5}}=2357.6$
$\mathrm{Nu}=\mathrm{c}\left(\frac{\mathrm{D} \vartheta_{\max } \rho}{\mu}\right)^{\mathrm{n}} \operatorname{Pr}^{1 / 3}$
The constants (c and n) are obtained from Table 13, using
$\frac{S_{p}}{D}=\frac{S_{n}}{D}=\frac{0.0192}{0.0064}=3$
c $=0.317$
$\mathrm{n}=0.608$
$\frac{\mathrm{h} \times 0.0064}{0.02853}=0.317 \times(2357.6)^{0.608} \times(0.701)^{\frac{1}{3}}$
$\mathrm{h}=141 \mathrm{~W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}$
This h is for ten rows. There are only 6 rows in this system. This value must be multiplied by the factor 0.94, as determined from Table 14.
$\mathrm{h}=141 \times 0.94=132.54 \mathrm{~W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}$
$\mathrm{A}=\pi \mathrm{DL} \times \mathrm{N}=\pi \times 0.0064 \times 15.24 \times 24=7.354 \mathrm{~m}^{2}$
$\mathrm{q}=\mathrm{hA}\left(\mathrm{T}_{\mathrm{w}}-\overline{\mathrm{T}}\right)=132.54 \times 7.354 \times 72.2=70373.3 \mathrm{~W}$

