AED 310 İSTATİSTİK

UYGULAMA

• SPSS' de basit doğrusal regresyonda kullanılan aynı menü kullanılır.

Adım 1: Analyze \rightarrow Regression \rightarrow Linear

Linear Regression	3
cinsiyet Yas Boy S.B.Y Spor. Turu Brans Mevki Bel.Cevresi Kalca.cevresi Otuzmetre Zikzak Otur.Eris Bkl Bkl Case Labels: WLS Weight: Statistics Plots	 Çoklu regresyon modelinde independent(s) bölümüne birden fazla değişken girişi yapılabilir. Method bölümünden değişken seçim metodu belirlenir. Ardında Statistik bölümüne tıklanır.

Adım 2: Ekran üzerinde görülen bilgilerden hangilerine ulaşılmak isteniyorsa ilgili kutucuklar işaretlenir. Continue butonu tıklanır.

Adım 3:Linear regresyon penceresinde **Plots** tuşuna tıklanarak elde edilmek istene grafikler işaretlenir.

Linear Regressio	n Dependent: Kilo Block 1 of 1 Previous Next	OK Paste Reset	
Brans Mevki Mevki Bel.Ce Kalca. Conduzm Zikzak Otuzm Ditzrn Kalca. ZPRED ZRESID ZRESID ADJPRE SRESID Standar Histo	egression: Plots Scatter 1 of 1 Previous Next Previous Next Previous Next Previous Next Next Next Next Previous Next Previous Next Previous Next Next Next Next Next Next Next Next	Continue Cancel Help	x ve y ekseninde yer alacak değerler seçilir

Histogram ve normal probability plot kısımları işaretlenerek çoklu regresyon modelinin iki varsayımını test edebiliriz.

Adım 4: Linear regresyon penceresinde Save tuşuna tıklanır aşağıdaki pencere açılır.

Interfective values Unstandardized Standardized Unstandardized Standardized Standardized Ustances Influence Statistics Cook's Cook's Cook's Cook's Cook's Standardized Diffit Spor Confidence Interval: 95 % Mew Coefficient statistics Belo Create coefficient statistics Belo Create coefficient statistics Belo Create a new dataset Dataset name: Otur Uzar BKI Export model information to XML file		Predicted Values	Pasiduala	
Browse	Sorrest Construction Constructi	Predicted Values Unstandardized Standardized Adjusted S.E. of mean predictions Uistances Mahalanobis Cook's Leverage values Prediction Intervals Mean Individual Confidence Interval: 95 % Coefficient statistics Create coefficient statistics Create a new dataset Dataset name: Write a new data file File Export model information to XML	Residuals Unstandardized Studentized Deleted Studentized deleted Influence Statistics DfBeta(s) Standardized DfBeta(s) DfFit Standardized DfFit Covariance ratio	Continue Cancel Help

İlgili bölümler seçilir **Continue** ve ardından **OK** tuşları tıklanarak işlem tamamlanır.

SPSS ÇIKTILARI VE YORUMLARI

Tanımlayıcı İstatistikler:

Descriptive Statistics

	Mean	Std. Deviation	N
Kilo	66,93	10,737	90
Bel.Cevresi	78,7222	5,82908	90
Kalca.cevresi	98,8556	6,58661	90
Otuzmetre	4,5466	,50532	90

Modele dahil olan değişkenlerin aritmetik ortalamaları ve standart sapmaları gösterir.

Kolerasyon Tablosu

		Kilo	Bel.Cevresi	Kalca.cevresi	Otuzmetre
Pearson Correlation	Kilo	1,000	,612	,427	-,532
	Bel.Cevresi	,612	1,000	,714	-,013
	Kalca.cevresi	,427	,714	1,000	,082
	Otuzmetre	-,532	-,013	,082	1,000
Sig. (1-tailed)	Kilo		,000	,000	,000
	Bel.Cevresi	,000		,000	,452
	Kalca.cevresi	,000	,000	18 <u>1</u>	,221
	Otuzmetre	,000	,452	,221	
N	Kilo	90	90	90	90
	Bel.Cevresi	90	90	90	90
	Kalca.cevresi	90	90	90	90
	Otuzmetre	90	90	90	90

Correlations

Correlations tablosu değişkenler arasındaki kolerasyonları göstermektedir. Tabloda bağımsız değişkenler arasında güçlü bir ilişki olması istenmez. Bağımsız değişkenler arasında 0,80 ve üzeri korelasyonlar varsa, bu durum çoklu bağıntı probleminin göstergesidir. Bu durumda araştırmacı bazı değişkenleri modelden çıkarabilir.

Model Özeti Tablosu

a. Predictors: (Constant), Otuzmetre, Bel.Cevresi, Kalca.cevresi

b. Dependent Variable: Kilo

Model özeti tablosunda R square bağımlı değişkenin yüzde kaçlık kısmının bağımsız değişkenler tarafından açıklandığını gösterir.

Durbin – Watson testi modelde otokorelasyon olup olmadığını gösterir. Genellikle 1,5 – 2,5 civarında bir D.W testi değeri otokolerasyon olmadığını gösterir.

Varyans Analizi Tablosu

ANOVAb

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	6691,539	3	2230,513	53,761	,000ª
	Residual	3568,061	86	41,489		
	Total	10259,600	89	169		

a. Predictors: (Constant), Otuzmetre, Bel.Cevresi, Kalca.cevresi

b. Dependent Variable: Kilo

Anova tablosu modelimizin bir bütün olarak anlamlı olup olmadığını test etmeye yarar.

Katsayılar Tablosu

	Coefficientsª										24			
	Unstandardized Coefficients				Standardized Coefficients		2	95% Confident	e Interval for B		Correlations		Collinearity	/ Statistics
	Model		B	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound	Zero-order	Partial	Part	Tolerance	VIF
۲	1	(Constant)	25,959	12,023	0	2,159	,034	2,059	49,859					
		Bel.Cevresi	1,014	,168	,550	6,026	,000	,679	1,348	,612	,545	,383	,485	2,063
		Kalca.cevresi	,126	,149	,077	,843	,402	-,171	,423	,427	,090	,054	,482	2,076
		Otuzmetre	-11,278	1,363	-,531	-8,275	,000	-13,987	-8,569	-,532	-,666	-,526	,983	1,017
8	a. Dep	pendent Variable	e: Kilo							8		20		

Modelin tahmini sonucu elde edilen parametre değerleri ve bunlara ilişkin *t* değerleri gösterilmektedir. Beta bölümünde yer alan en yüksek değere sahip olan değişken göreli olarak en önemli bağımsız değişkendir. Düşük Tolerens ve yüksek VIF değerleri bağımsız değişkenler arasındaki çoklu bağlantı olduğunu gösterir.

BASİT DOĞRUSAL REGRESYON

• Regresyon analizi bir bağımlı değişken ile bir bağımsız (basit regresyon) veya birden fazla bağımsız (çoklu regresyon) değişken arasındaki ilişkilerin bir matematiksel eşitlik ile açıklanması sürecidir.

BASİT DOĞRUSAL REGRESYON MODELİ

$$\mathbf{y} = \mathbf{\beta}\mathbf{0} + \mathbf{\beta}\mathbf{1}\mathbf{x} + \mathbf{\varepsilon}$$

β_0 ve β_1 değerleri hesaplanan anakütle parametleridir.

Dikkat Edilecek Noktalar

Dikkat Edilecek Noktalar

 Pratikte β0 ve β1 değerleri bilinmiyorsa anakütleden bir örnek alınarak anakütle parametleri hakkında istenen bilgiler üretilir. Tahmini değer olarak b0 ve b1 kullanılır.

