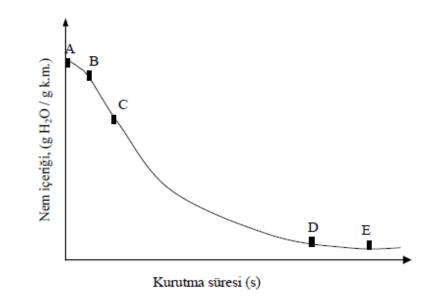
FDE 401 Process Design

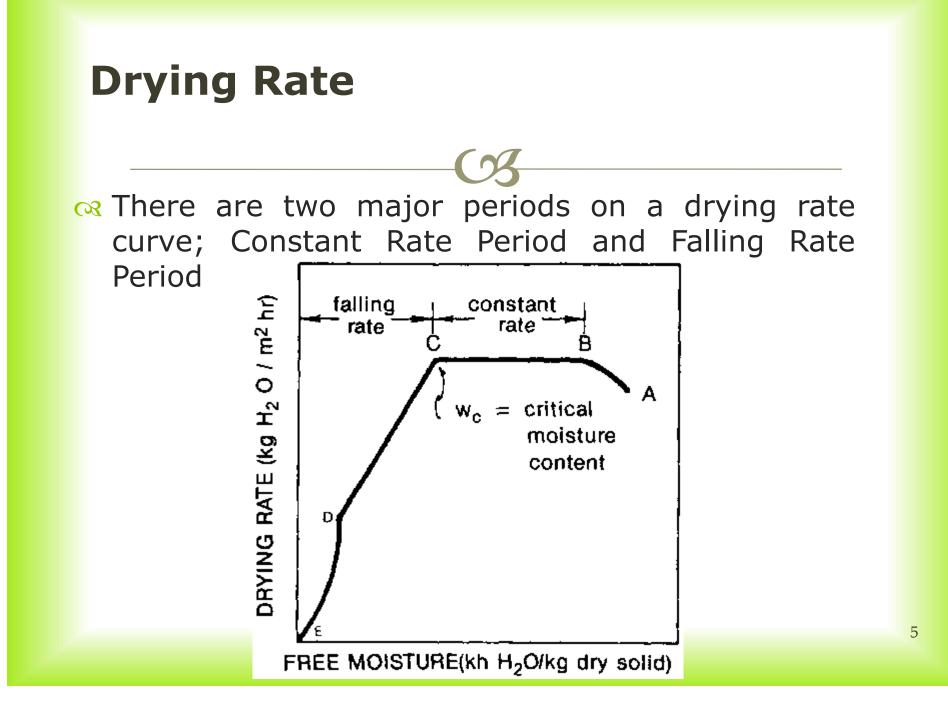
DRYING

Introduction

It is the oldest preservation method used for foods.
The moisture content of the food can be decreased from 80-90% to 10-20%.

Representation Purpose


- To decrease the enzyme and microbiological activity
- To increase the shelf life
- To produce food products that can be stored easily.



Drying Mechanism

○ The moisture content of the food decreases during drying and reaches to a constant value (equilibrium moisture) at the end of the process.

Mathematical Models

- Mathematical models of drying are based on heat and mass transfer.
- The models predict the change of moisture ratio of the food during drying.
- Mt: moisture content at time t (kg water/kg dry solid)
- ∝ Mo: initial moisture content (kg water/kg dry solid)

Models Used in Drying

Model	Name of Model
ANO=exp(-kt)	Newton
ANO=exp(-kt ⁿ)	Page
ANO=exp[(-kt) ⁿ]	Geliştirilmiş Page I
ANO=exp[-(kt) ⁿ]	Geliştirilmiş Page II
ANO=a exp(-kt)	Henderson ve Papis
ANO=a exp(-kt)+c	Logaritmik
ANO=a exp(- k_0 t)+b exp(- k_1 t)	İki terimli
ANO=aexp(-kt)+(1-a)exp(-kat)	İki terimli exponansiyel
ANO= $1+at+bt^2$	Wang ve Sing
$t=a \ln(ANO)+b(\ln(ANO))^2$	Thompson
ANO= a exp(-kt)+(1-a)exp(-kbt)	Difuzyon yaklaşım
ANO= a exp(-kt)+(1-a)exp(-gt)	Verma ve ark.
ANO= a exp(-kt)+b exp(-gt)+c exp(-ht)	Geliştirilmiş Henderson ve Papis
ANO= a exp(-kt ⁿ)+bt	Midilli ve ark.

In this project your are required to design
Dimensions of a tray
Number of trays
Dimensions of the drier