FDE 205 FLUID MECHANICS

Shell Momentum Balance and Velocity Profile in Laminar Flow

- So far we analyzed momentum balances using an overall, macroscopic control volume.
- From this we obtained the total or overall changes in momentum crossing the control surface.
- This overall momentum balance did not tell us the details of what happens inside the control volume (inside the pipe).
- In this lecture we will analyze a small control volume and then shrink this control volume to differential size.
- Shell(kabuk): a shell is a differential element of flow. (akışın çok küçük boyutta bir kesiti)

- The most important reason for establishing a shell momentum balance (kabuk momentum denkliği) is to determine the velocity profile (hız profili) of the fluid inside the pipe.
- Velocity profile (hız profili): is the equation which helps us to determine the local velocity of the fluid inside the system. (sistemin içerisindeki bir noktada akışkanın hızını hesaplamamıza yarayan bir denklem)

Shell Momentum Balance Inside a Pipe

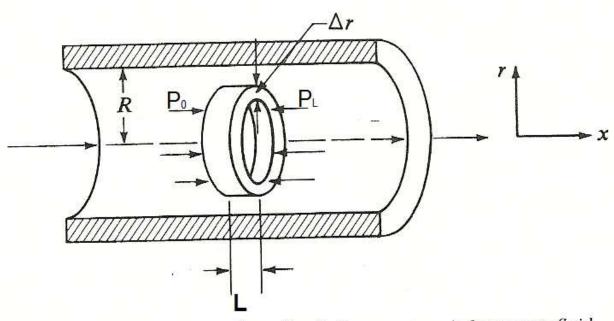


Figure 2.9-1. Control volume for shell momentum balance on a fluid flowing in a circular tube.

Shell Momentum Balance Inside a Pipe

- Assumption:
- 1) Incompressible, newtonian fluid
- 2) One directional flow
- 3) Steady State
- 4) Laminar flow
- 5) Fully developed flow: tam gelişmiş akış (akış borunun giriş kısmında değildir. Girişten kaynaklanan etkiler yok) (Vx≠f(x))
- 6) No slip boundary condition : sınır koşullarında kayma yok (akışkanın boruyla temas ettiği noktalarda hız=0)

Shell Momentum Balance Inside a Pipe

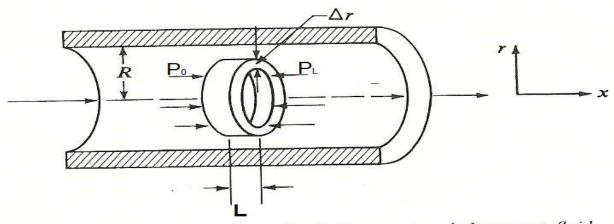
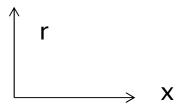



FIGURE 2.9-1. Control volume for shell momentum balance on a fluid flowing in a circular tube.

Let's assume the cylindrical control volume is a shell with an inside radius r, thickness Δr and lenght L. (Boru içerisindeki sıvıdan iç çapı r, kalınlığı Δr ve uzunluğu L olan çok küçük bir kesit aldığımızı düşünelim .) Momentum Balance at steady state:

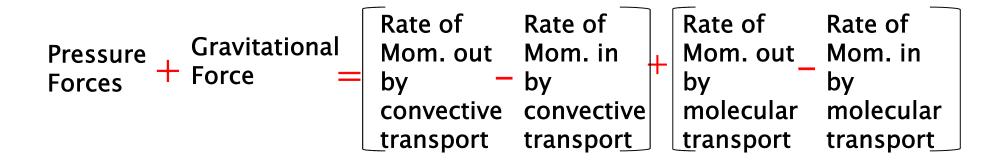
Forces acting on system=
Rate of momentum out-Rate of momentum in

- Forces acting on the fluid:
- 1) Pressure Forces(P.A)
- 2) Gravitational Forces(M.g)
- Momentum Transfer:
- 1. Convective momentum transfer (Akışkanın hızından kaynaklanan) (\dot{m}_{v})
- 2. Molecular momentum transfer (Moleküler aktarımla momentum transferi) $(\vec{\tau}_{rx}A)$

- Molecular momentum transfer:
 - If there is a fluid flowing in x direction, there will be a molecular momentum transport between the layers of the fluid in r direction.
 - This molecular momentum transport is caused by the shear stress

 $T_{rx} \rightarrow x$ yönünde uygulanan kuvvet sebebiyle oluşan r yönündeki kayma gerilimi

 T_{rx} ->momentum akısı olarak da bilinir


(Momentum akısı: birim zamanda birim

akan momentum)

Forces acting on control volume =

(rate of momentum out-rate of momentum in)

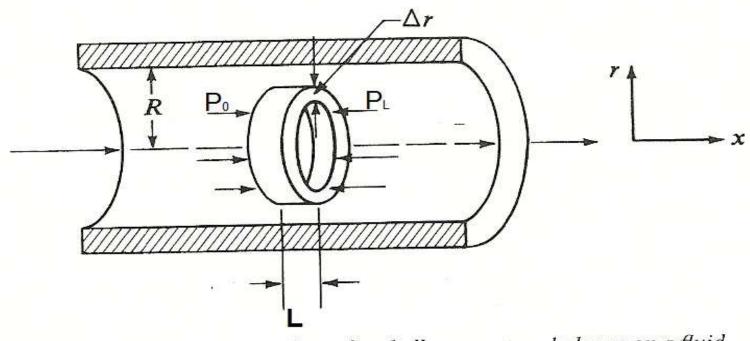


Figure 2.9-1. Control volume for shell momentum balance on a fluid flowing in a circular tube.

Velocity Profile

For laminar flow at steady state, the velocity profile inside a pipe is a parabolic curve:

$$V_{x} = \left(\frac{P_0 - P_L}{4\mu L}\right) R^2 \left(1 - \frac{r^2}{R^2}\right)$$

Maximum velocity

r=0 V=Vmax

$$V_{x} = \left(\frac{P_{0} - P_{L}}{4\mu L}\right) R^{2}$$

Average velocity

Average velocity for a cross section is found by summing up all the velocities over the cross section and dividing by the crosssectional area

$$V_{x,average} = \left(\frac{P_0 - P_L}{8\mu L}\right) R^2 = \left(\frac{P_0 - P_L}{32\mu L}\right) D^2$$

Hagen-Poiseuille equations, relates the pressure drop and average velocity for laminar flow in horizontal pipe.

Pressure Drop and Friction Loss in Pipes

The pressure drop in <u>Laminar flow</u> in a pipe can be calculated by Hagen-Poiseuille equation.

$$\Delta P = \frac{8\mu LQ}{\pi R^4}$$

$$\Delta P = \frac{32\,\mu L < v >}{D^2}$$