Lesson 3

Lesson 3

Application’s Life Cycle

Victor Matos
Cleveland State University

Portions of this page are reproduced from work created and shared by Google and used according to terms
described in the Creative Commons 3.0 Attribution License.

3. Android — Application's Life Cycle

Anatomy of Android Applications

An Android application consists of one or more core components.

Like musicians in an orchestra, the independent core components
cooperate with each other contributing somehow to the success of the
application.

A core component can be:

An Activity

A Service

A broadcast receiver
A content provider

ARWwNR

Lesson 3

3. Android — Application's Life Cycle

Anatomy of Android Applications

1. Activity

* Atypical Android application consists of one or more activities.
* An activity is roughly equivalent to a Windows-Form .
* Anactivity usually shows a single visual user interface (Ul).

* Only one activity is chosen to be executed first when the application is
launched.

* An activity may transfer control and data to another activity through an
interprocess communication protocol called intents.

3. Android - Application's Life Cycle

Anatomy of Android Applications

2. Service

* Services are a special type of activity that do not have a visual user interface.
* Services usually run in the background for an indefinite period of time.
* Applications start their own services or connect to services already active.

* For example, your background GPS service could be set to inconspicuosly
run in the backgroud detecting satellite, phone tower or wi-fi router location
information. The service periodically broadcast location coordinates to any
application listening for that kind of data. An application may bind to the
running GPS service or be the first to execute it.

Lesson 3

3. Android — Application's Life Cycle

Anatomy of Android Applications

3. Broadcast receiver

* A BroadcastReceiver is a dedicated listener that waits for system-wide or
locally transmitted messages.

* Broadcast receivers do not display a user interface.

* They tipically register with the system by means of a filter acting as a key.
When the broadcasted message matches the key the receiver is activated.

* Abroadcast receiver could respond by either executing a specific activity or
use the notification mechanism to request the user’s attention.

3. Android - Application's Life Cycle

Anatomy of Android Applications

4. Content provider

* A content provider is a data-centric service that makes persistent datasets
available to any number of applications.

* Common global datasets include: contacts, pictures, messages, audio files,
emails.

* The global datasets are usually stored in a SQLite database.
* The content provider class offers a standard set of “database-like” methods

to enable other applications to retrieve, delete, update, and insert data
items.

Lesson 3

3. Android — Application's Life Cycle

Application’s Life Cycle

Each Android application runs inside its own instance of a Dalvik
Virtual Machine (DVM).

At any point in time several parallel DVM instances could be active.

Unlike a common Windows or Unix process, an Android application
does not completely controls the completion of its lifecycle.

Occasionally hardware resources may become critically low and the OS could
order early termination of any process. The decision considers factors such as:

1. Number and age of the application’s components currently running,
2. relative importance of those components to the user, and
3. how much free memory is available in the system.

3. Android — Application's Life Cycle

Component Lifecycles

All components execute according to a master plan that consists of:

1. Abeginning - responding to a request to instantiate them
2. Anend - when the instances are destroyed.

3. Asequence of in between states — components sometimes are
active or inactive, or in the case of activities - visible or invisible.

Life as an Android Application:

Start Active / Inactive End
Visible / Invisible

Lesson 3

3. Android — Application's Life Cycle

Activty Stack

* Activities in the system are scheduled using an activity stack.

* When a new activity is started, it is placed on top of the stack
to become the running activity

* The previous activity is pushed-down one level in the stack,
and may come back to the foreground once the new activity
finishes.

* If the user presses the Back Buttonthe current activity
is terminated and the next activity on the stack moves up to
become active.

3. Android — Application's Life Cycle

Activity Stack

New Activity é Running Activity

New Activity Back button pushed or ¥R
started

running activity closed

—

Last Running

Activity Stack P—
y 3
Activities Removed to
Activity 2 by free resources

Activity 1

Figure 1. 10

Lesson 3

3. Android — Application's Life Cycle

Life Cycle Events
Life Cycle States

When progressing from one state to the other, the OS notifies the
application of the changes by issuing calls to the following protected
transition methods:

void onCreate(Bundle savedinstanceState)
void onStart()

void onRestart()

void onResume()

void onPause()

void onStop()
void onDestroy()

11

3. Android — Kpp Tcation's Lite Cycle

Life Cycle Callbacks

public class leActivity Is Activity {
@Override
Most of your code public void onCreate (Bundle savedinstanceState) {
goes here super.onCreate(saved)
// The activity is being created.
}
@Override
protected void onStart() {
super.onStart();
// The activity is about to become visible.
}
@Override
protected void onResume() {
super.onResume();
// The activity has become visible (it is now "resumed").
}
Save your @Override

. protected void onPause() {
im porta nt data super.onPause();

here // Another activity is taking focus (this activity is about to be "paused").
}
@Override
protected void onStop() {
super.onStop();
// The activity is no longer visible (it is now "stopped")
}
@Override
protected void onDestroy() {
super.onDestroy();
// The activity is about to be destroyed.

Reference: }
ndroid ity html }

Lesson 3

3. Android — Application's Life Cycle

Life Cycle States

An activity has essentially
three states:

1. |Itis active or running

2. ltis paused or
3. ltis stopped .

Image from: http:,

1. onCreate()
2. onStart()
3. onResume()

onResume() onPause()

3. onResume()
2. onStart()
1. onRestart()

onStop()

<=Kill=>=

onDestroy()

Figure 2.

13

3. Android — Application's Life Cycle

Life Cycle States

An activity has essentially three states:

1. ltis active or running when it is in the foreground of the screen

(at the top of the activity stack).

This is the activity that has “focus” and its graphical interface is

responsive to the user’s interactions.

14

Lesson 3

3. Android — Application's Life Cycle

Life Cycle States

'

2. Itis paused if it has lost focus but is still visible to the user.

That is, another activity lies on top of it and that new activity either is
transparent or doesn't cover the full screen.

A paused activity is alive (maintaining its state information and
attachment to the window manager).

Paused activities can be killed by the system when available memory
becomes extremely low.

15

3. Android - Application's Life Cycle

Life Cycle States

=

3. ltis stopped if it is completely obscured by another activity.
Continues to retains all its state information.
It is no longer visible to the user (its window is hidden and its life cycle

could be terminated at any point by the system if the resources that it
holds are needed elsewhere).

16

Lesson 3

3. Android — Application's Life Cycle

Application’s Life Cycle |

Your turn! |
EXPERI M ENT 1. ‘ Teaching notes

1. Write an Android app to show the different cycles followed by an application.
2. The main.xml layout should include a Button (text: “Finish”, id: btnFinish) and
an EditText container (txt: “” and id txtMsg).
3. Use the onCreate method to connect the button and textbox to the program.
Add the following line of code:
Toast.makeText (this, "onCreate", 1).show();

4. The click method has only one command: finish(); called to terminate the
application. Add a Toast-command (as the one above) to each of the remaining
six main events. To simplify your job use the Eclipse’s top menu: Source >
Override/Implement Methods...

5. On the option window check mark each of the following events: onStart,
onResume, onPause, onStop, onDestry, onRestart
(notice how many onEvent... methods are there!!!)

6. Save your code.
17

3. Android — Application's Life Cycle

Application’s Life Cycle

Your turn!
EXPERIMENT 1 (cont.)

Teaching notes

Compile and execute application.

Write down the sequence of messages displayed by the Toast-commands.

Press the FINISH button. Observe the sequence of states.

10. Re-execute the application

11. Press emulator’s HOME button. What happens?

12. Click on launch pad, look for icon and return to the app. What sequence of
messages is displayed?

13. Click on the emulator’s CALL (Green phone). Is the app paused or stopped?

14. Click on the BACK button to return to the application.

15. Long-tap on the emulator’s HANG-UP button. What happens?

L 0~

18

Lesson 3

3. Android — Application's Life Cycle

Application’s Life Cycle

Your turn!
EXPERIMENT 2

Teaching notes

7. Run asecond emulator.
1. Make a voice-call to the first emulator that is still showing our app. What
happens on this case? (real-time synchronous request)
2. Send a text-message to first emulator (asynchronous attention request)

8. Write a phrase in the EditText box (“these are the best moments of my life....”).

9. Re-execute the app. What happened to the text?

19

3. Android — Application's Life Cycle

Application’s Life Cycle

Your turn!
EXPERIMENT 3

Provide data persistency.

Teaching notes

18. Use the onPause method to add the following fragment
SharedPreferences myFilel = getSharedPreferences ("myFilel",
Activity. MODE_PRIVATE, De
SharedPreferences.Editor myEditor = myFilel.edit() ;
String temp = txtMsg.getText().toString()
myEditor.putString("mydata", temp)
myEditor.commit () ;

18. Use the onResume method to add the following frament
SharedPreferences myFile = getSharedPreferences ("myFilel",
Activity. MODE_PRIVATE, De
if ((myFile '= null) && (myFile.contains("mydata"))) {
String temp = myFile.getString("mydata", "***");
txtMsg.setText (temp) ;
}

19. What happens now with the data previously entered in the text box?
20

Lesson 3

- I“l
3. Android — Application's Life Cycle 4 A\
.
., [
Application’s e
Life Cycle | SR "

Figu re 3. User navigates

o thie activity

p .

[depprocsss | | Aoty |

y ERA. . W,
I

Anather activity comes
into the foreground
L

onPause) @ ——
I

|
| The activity is
| no longer visible
|
|

- onStop() O

T
The acitivily is finishing or
g destioyed by the sysiem

Reference:
http://developer.android.com/reference/android/app/Activity.html 21

3. Android — Application's Life Cycle

Application’s Lifetime
Complete / Visible / Foreground Lifetime

* An activity begins its lifecycle when entering the onCreate() state .

* If notinterrupted or dismissed, the activity performs its job and
finally terminates and releases its acquired resources when
reaching the onDestroy() event.

Complete cycle

onCreate() — onStart — onResume() — onPause() — onStop() — onDestroy

Foreground
: cycle ’

Visible cycle

«— TEEEEE

22

Lesson 3

3. Android — Application's Life Cycle

Life Cycle Events

Associating Lifecycle Events with Application’s Code
Applications do not need to implement each of the transition methods,
however there are mandatory and recommended states to consider

(Mandatory)
All activities must implement onCreate() to do the initial setup
when the object is first instantiated.

(Highly Recommended)

Activities should implement onPause() to commit data changes in
anticipation to stop interacting with the user.

23

3. Android - Application's Life Cycle

Life Cycle Methods

Method: onCreate()
starts
e Called when the activity is first created.

* Most of your application’s code is written here.

* Typically used to define listener’s behavior, initialize
data structures, wire-up Ul view elements (buttons,
text boxes, lists) with static Java controls, etc.

* |t may receive a data Bundle object containing the
activity's previous state (if any).

* Followed by onStart()

onStart()

24

Lesson 3

3. Android — Application's Life Cycle

Life Cycle Methods

Method: onPause() L
1. Called when the system is about to transfer] The acivi
. . comes [o the
control to another activity. foreground
. . Another activity comes
2. Gives you a chance to commit unsaved data, in front o the activiy
and stop work that may unnecessarily burden

the system.

3. The next activity waits until completion of this (Tha aciviy 7o fonge visBie)
state.

4. Followed either by onResume() if the activity
returns back to the foreground, or by onStop()
if it becomes invisible to the user.

5. A paused activity could be killed by the system.

25

3. Android - Application's Life Cycle

Life Cycle Methods

Killable States

* Activities on killable states can be terminated by the system when
memory resources become critically low.

* Methods: onPause(), onStop(), and onDestroy()are killable.

* onPause() isthe only state that is guaranteed to be given a
chance to complete before the process is killed.

* You should use onPause () to write any pending persistent data.

26

Lesson 3

3. Android — Application's Life Cycle

Life Cycle Methods

As an aside...
Android Preferences

Preferences is a simple Android persistence mechanism used to store and
retrieve key-value pairs of primitive data types. Similar to a Java Hasmap.
Suitable for keeping small amounts of state data.

SharedPreferences myPrefSettings =
getSharedPreferences(MyPreferrenceFile, actMode);

* A named preferences file could be shared with other components in the
same application.

* AnanonymousActivity.getPreferences() isused only by the
calling activity.

* You cannot share preferences across applications.

27
LAYOUT
L <?xml version="1.0" encoding="utf-8"?>
Exam P le i
oid="http. android. Pk droid"
M android:id="@+id/myScreen"
L I fe Cyc | e android:orientation: ical”
android:layout_width="fill_parent"
android:layout_height="fill_parent"
‘ >
<TextView
Example android:layout_width="fill_parent"
. . . android:layout_height="wrap_content"
The following application ST
>
demonstrates some of <edifext : DI 1120
android:id="@+id/txtColorSelect"
1+1 H android:hint="Background color (red, green, blue)"
the State tranSItlonlng android:layout_width="wrap_content" ‘B K R i j
H H H H android:layout_height="wrap_content"> ackground color (red, green, blue
situations experlenced n </EditText>
. . <TextView
the life-cycle of a typical androidid="@+id/txtToDo"
. .. android:layout_width="fill_parent"
An d roli d act |V|ty. android:layout_height="wrap_content”
<!-- transparent -->
</TextView>
<Button
android:text=" Finish "
android:id="@-+id/btnFinish"
android:layout_width="wrap_content"
android:layout_height="wrap_content">
</Button>
</LinearLayout>
28

Lesson 3

3. Android — Application's Life Cycle

Example: Life Cycle

Code: Life Cycle Demo. Part 1

Package cis493.lifecycle

import android.app.Activity;

import android.content.SharedPreferences;
import android.os.Bundle;

import android.view.View;

import android.widget.*;

//GOAL: show the following life-cycle events in action

//protected void onCreate (Bundle savedInstanceState) ;
//protected void onStart() ;

//protected void onRestart() ;

//protected void onResume () ;

//protected void onPause() ;

//protected void onStop() ;

//protected void onDestroy () ;

3. Android — Application's Life Cycle

Example: Life Cycle

public class GoodLife extends Activity {

// class variables and constants
public static final String MYPREFSID = "MyPrefseo1";
public static final int actMode = Activity.MODE_PRIVATE;

LinearLayout myScreen;
EditText txtColorSelect;
TextView txtToDo;

Button btnFinish;

Lesson 3

3. Android — Application's Life Cycle

Example: Life Cycle

Code: Life Cycle Demo. Part 2

QOverride

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.main) ;
myScreen = (LinearLayout) findViewById(R.id.myScreen)

txtToDo = (TextView) findViewById(R.id.txtToDo),
String msg = "Instructions:

+ "0. New instance (onCreate, onStart, onResume)
"l. Back Arrow (onPause, onStop, onDestroy)
"2. Finish (onPause, onStop, onDestroy)
"3. Home (onPause, onStop)
"4. After 3 > App Tab > re-execute current app
" (onRestart, onStart, onResume)
"5. Run DDMS > Receive a phone call or SMS
" (onRestart, onStart, onResume)
"6. Enter some data - repeat steps 1-5

+ o+ o+ o+

txtToDo.setText (msg) ;

\n
\n
\n
\n
\n
\n
\n
\n
\n
\n

3. Android — Application's Life Cycle

Example: Life Cycle

Code: Life Cycle Demo. Part 2

txtColorSelect = (EditText) findViewById(R.id.txtColorSelect);
// you may want to skip discussing the listener until later
.—) txtColorSelect.addTextChangedListener (new TextWatcher () {

public void onTextChanged(CharSequence s, int start, int before, int count) {

// TODO Auto-generated method stub
}

public void beforeTextChanged(CharSequence s, int start, int count,int after) ({

// TODO Auto-generated method stub
}
public void afterTextChanged(Editable s) {
‘-) changeBackgroundColor (s.toString()) ;

1

btnFinish = (Button) findViewById(R.id.btnFinish) ;
btnFinish.setOnClickListener (new OnClickListener () {
public void onClick (View arg0) {
finish() ;
}
b
Toast.makeText (getApplicationContext (), "onCreate", 1).show();

32

Lesson 3

3. Android — Application's Life Cycle

Example: Life Cycle

QOverride
protected void onPause () {
super.onPause () ;
‘—> saveDataFromCurrentState () ;
Toast.makeText (this, "onPause", 1) .show()

}

QOverride
protected void onRestart() {
super.onRestart() ;
Toast.makeText (this, "onRestart", 1) .show();

}

QOverride
protected void onResume () {
super.onResume () ;
Toast.makeText (this, "onResume", 1) .show();

3. Android — Application's Life Cycle

Example: Life Cycle

QOverride
protected void onStart() {
// TODO Auto-generated method stub
super.onStart () ;
._> updateFromSavedState () ;
Toast.makeText (this, "onStart", 1) .show();
}

QOverride

protected void onDestroy () {
// TODO Auto-generated method stub
super.onDestroy () ;
Toast.makeText (this, "onDestroy", 1).show();

}

QOverride
protected void onStop() {
// TODO Auto-generated method stub
super.onStop () ;
Toast.makeText (this, "onStop", 1) .show() ;

Lesson 3

3. Android — Application's Life Cycle

Example: Life Cycle

protected void saveDataFromCurrentState() {
SharedPreferences myPrefs = getSharedPreferences (MYPREFSID, actMode) ;
SharedPreferences.Editor myEditor = myPrefs.edit();
myEditor.putString("myBkColor", txtColorSelect.getText().toString())
myEditor.commit () ;

}// saveDataFromCurrentState

protected void updateFromSavedState() {
SharedPreferences myPrefs = getSharedPreferences (MYPREFSID, actMode) ;

if ((myPrefs != null) && (myPrefs.contains ("myBkColor"))) {
String theChosenColor = myPrefs.getString("myBkColor", "");
txtColorSelect.setText (theChosenColor) ;
._) changeBackgroundColor (theChosenColor) ;

}
}// UpdateFromSavedState

protected void clearMyPreferences() {
SharedPreferences myPrefs = getSharedPreferences (MYPREFSID, actMode) ;

SharedPreferences.Editor myEditor = myPrefs.edit();
myEditor.clear() ;
myEditor.commit () ;

3. Android — Application's Life Cycle

Example: Life Cycle

private void changeBackgroundColor (String theChosenColor) {
// change background color
if (theChosenColor.contains("red"))
myScreen.setBackgroundColor (0x££££0000) ;
else if (theChosenColor.contains('"green'"))
myScreen.setBackgroundColor (0x££00££00) ;
else if (theChosenColor.contains("blue"))
myScreen.setBackgroundColor (0x£f£0000£f) ;
else {
//reseting user preferences
clearMyPreferences () ;
myScreen. setBackgroundColor (0x££000000) ;

36

Lesson 3

3. Android — Application's Life Cycle

Example: Life Cycle

/*
protected void onRestoreInstanceState(Bundle savedInstanceState)
This method is called after onStart() when the activity is being re-initialized
from a previously saved state.
The default implementation of this method performs a restore of any view state
that had previously been frozen by onSaveInstanceState(Bundle).
*/
QOverride
protected void onRestoreInstanceState (Bundle savedInstanceState) {
super.onRestoreInstanceState (savedInstanceState) ;
Toast.makeText (getBaseContext (),
"onRestoreInstanceState ...BUNDLING",
Toast.LENGTH_ LONG) .show () ;

3. Android — Application's Life Cycle

Example: Life Cycle

/*
protected void onSaveInstanceState(Bundle outState)

Called to retrieve per-instance state from an activity before being killed
so that the state can be restored in

onCreate(Bundle) or
onRestoreInstanceState(Bundle) (the Bundle populated by this method
will be passed to both).

This method is called before an activity may be Rilled so that when it comes

back some time in the future it can restore its state. For example, if activity B
is Launched in front of activity A, and at some point activity A is Rilled to
reclaim resources, activity A will have a chance to save the current state of

its user interface via this method so that when the user returns to activity A,
the state of the user interface can be restored via:

onCreate(Bundle) or onRestoreInstanceState(Bundle).

*/

38

Lesson 3

3. Android — Application's Life Cycle

Example: Life Cycle

@Override
protected void onSaveInstanceState (Bundle outState) {
super.onSaveInstanceState (outState) ;
Toast.makeText (getBaseContext (),
"onSaveInstanceState .. .BUNDLING",
Toast.LENGTH LONG) .show();
} // onSavelnstanceState

}//LyfeCicleDemo

39

3. Android — Application's Life Cycle

Example: Life Cycle

onCreate... onResume...

DG 137

GoodLife GoodLife GoodLife

Finish Finish Finish

onCreate onstart onResume

40

Lesson 3

3. Android — Application's Life Cycle

Example: Life Cycle

Calculator Camera

CarHome C. s Car Home

Gallery

L) =)

onPause 2 A 2 A onDestroy

o A

After pressing “Back Arrow”
41

3. Android - Application's Life Cycle

Example: Life Cycle

After After After
pressing “Home” re-executing AndLife2 “Back Arrow” or Finish

onSavedInstanceState > onRestart > onPause >
onPause > onStart > onStop >

onStop > onResume > onDestroy >

] B 11:220M

Life cycle

Hasta la vistal

Preserving State Information

Enter data: “Hasta la vista!”

Click Home button

onSavedInstance > onPause > onStop
Read your SMS

Execute an instance of the application
onRestart > onStart > onResume

End of Example
You see the data entered in step 1

1.
2.
3.
4.
5.
6.
7.

42

Lesson 3

Life Cycle — QUESTIONS ?

Appendix

Using Bundles to Save State

@Override
public void onCreate(Bundle savedInstanceState) {
. somevalue = savedInstanceState.getString(SOME_KEY);

}

@0verride protected void onSaveInstanceState(Bundle outState) {
super.onSaveInstanceState(outState);
outState.putString(SOME_KEY, "blah blah blah");

43

Bibliography:
1. Android Developers.
http://developer.android.com/reference/android/app/Activity.html

2. Professional Android Application Development by Reto Meier ISBN: 978-
0-470-34471-2. Wrox Publications, 2008.

3. Unlocking Android by Frank Ableson, Charlie Collins, and Robi Sen. ISBN
978-1-933988-67-2. Manning Publications, 2009.

4. Professional Android 2 Application Development (Wrox Programmer to
Programmer) by Reto Meier. ISBN-10: 0470565527. Wrox Pub. 2010.

5. The Busy Coder's Guide to Advanced Android Development by Mark
Murphy. ISBN ISBN: 978-0-9816780-5-4. CommonsWare Pub. 2012.

6. Android Programming Tutorials by Mark Murphy. ISBN ISBN: 9 ISBN: 978-
0-9816780-7-8. CommonsWare Pub. 2012.

44

