MATHEMATICAL MODELING

LINEARIZATION

- Each term in the model is linearized around the operating point (steady state value of the process).
 - When linearized, the model would be valid only around the operating point.

Taylor Series Expansion:

For a function that has one variable (linearization around x_s)

$$F(x) = F(x_s) + \frac{dF}{dx} \Big|_{X_s} (x - x_s) + \frac{1}{2!} \frac{d^2 F}{dx^2} \Big|_{X_s} (x - x_s)^2 + R$$

For a function that has two variables (linearization around x_s)

F(x₁, x₂) = F(x_{1s}, x_{2s}) +
$$\frac{dF}{dx_1}$$
 $(x_1 - x_{1s}) + \frac{dF}{dx_2}$ $(x_2 - x_{2s})$
 $+ \frac{1}{2!} \frac{d^2F}{dx_1^2}$ $(x_1 - x_{1s})^2 + \frac{1}{2!} \frac{d^2F}{dx_2^2}$ $(x_2 - x_{2s})^2$
 $+ \frac{d^2F}{dx_1 dx_2}$ $(x_1 - x_{1s})^2 + \frac{1}{2!} \frac{d^2F}{dx_2^2}$ $(x_2 - x_{2s})^2$

Linearization of a non-linear function around $x_s = 1$

Linearization of $y=1.5x^2+3$ at $x_s=1$

Linearization example:

$$F(x) = x^{1/2}$$
 $F(x) = x^{1/2} + \frac{1}{2} x^{-1/2} (x - x_s)$

Let's go back to our liquid level control problem

Ac
$$\frac{dh}{dt}$$
 = Fi - F
Ac $\frac{dh}{dt}$ = Fi - c \sqrt{h}
Nonlinear

Let's linearize around a steady state value, hs:

$$c\sqrt{h} \approx c\sqrt{h_s} + \frac{d(ch^{1/2})}{dh} \Big|_{h = h_s} (h - h_s)$$

$$c\sqrt{h} \approx c\sqrt{h_s} + \frac{c}{2\sqrt{h_s}} (h - h_s)$$

Insert it in the original equ.;

Ac
$$\frac{dh}{dt}$$
 = Fi - $c\sqrt{hs}$ - $\frac{c}{2\sqrt{hs}}$ (h - hs)

Steady state:
$$0 = F_{is} - c\sqrt{h_s}$$

($h=h_s$, $F_i = F_s$)

Subtract the steady state equation from unsteady state equation:

Ac
$$\frac{dh}{dt}$$
 = (Fi - Fis) - $\frac{c}{2\sqrt{h_s}}$ (h - hs)

Define deviation variables:

$$y = h - h_s$$

 $u = F_i - F_{is}$

$$Ac \frac{dy}{dt} = u - \frac{c}{2\sqrt{h_s}} y$$

$$Ac \frac{dy}{dt} + \frac{c}{2\sqrt{hs}} y = u$$

A more realistic model

Let's solve the differential equ. and find Transfer function of the process

$$L\left[\frac{dy}{dt} + \frac{c}{Ac}y\right] = L\left[\frac{1}{Ac}u\right] \qquad (2. \text{ configuration})$$

$$s y(s) + \frac{c}{Ac} y(s) = \frac{1}{Ac} u(s)$$
 Multiply with Ac and divide by c

$$\left(\frac{Ac}{c}\right) s y(s) + y(s) = \frac{1}{c} u(s)$$

$$(\tau s + 1) y(s) = \frac{1}{c} u(s)$$

$$\frac{y(s)}{u(s)} = \frac{1/c}{\tau s + 1}$$

Let's find the transfer function of the process

☐ The ratio of laplace of the output variable to laplace of the input variable

$$G(s) = \frac{y(s)}{u(s)} = \frac{1/c}{\tau s + 1}$$
 (For liquid level control system)

Process

Example 2: Stirred-tank heating system

Input Variables

q: Manipulated variable(q_{steam})

T_i: Disturbance

Output Variables

T: Controlled variable

$$\frac{dy}{dt} + \frac{F}{V} y = \frac{\lambda}{\rho V C_p} u + \frac{F}{V} d$$

Deviation var.: $y = T - T_s$, $u = q - q_s$, $d = T_i - T_{is}$

Take laplace:

$$s y(s) + \frac{F}{V} y(s) = \frac{\lambda}{\rho V C_p} u(s) + \frac{F}{V} d(s)$$
 (Multiply each term

with V/F)

$$\left(\frac{\mathbf{V}}{\mathbf{F}}\mathbf{s}+1\right)\mathbf{y}(\mathbf{s})=\frac{\lambda}{\rho \mathbf{F} \mathbf{C}_{\mathbf{p}}}\mathbf{u}(\mathbf{s})+\mathbf{d}(\mathbf{s})$$

$$y(s) = \frac{K}{\tau s + 1} u(s) + \frac{1}{\tau s + 1} d(s)$$

$$\tau = \frac{\mathbf{V}}{\mathbf{F}} \quad , \quad \kappa = \frac{\lambda}{\rho \, \mathbf{F} \, \mathbf{C}_{\mathbf{P}}}$$

Transfer function of the process