Example 3: Isothermal CSTR with 1. Order Chemical Reaction

Find the model and the transfer function of the process.
Mass balance for component A
Accumulation=In- Out + Generation
$\frac{d\left(M_{A} V^{\prime}\right)}{d t}=M_{A} F C_{A i}-M_{A} F C_{A}-M_{A} V k C_{A}$
M_{A} : molecular weight of $\mathrm{A}, \mathrm{V}=$ constant

Volume: V \mathbf{m}^{3}

$$
\frac{d C_{A}}{d t}=\frac{F}{V} C_{A i}-\frac{F}{V} C_{A}-k C_{A}
$$

Output var: $\mathrm{C}_{\mathrm{A}}\left(\mathrm{mol} / \mathrm{m}^{3}\right)$
Input var.: $\mathrm{C}_{\mathrm{Ai}}\left(\mathrm{mol} / \mathrm{m}^{3}\right)$

$$
\frac{\mathrm{dC}_{\mathrm{A}}}{\mathrm{dt}}+\left(\frac{\mathrm{F}+\mathrm{kV}}{\mathrm{~V}}\right) \mathrm{C}_{\mathrm{A}}=\frac{\mathrm{F}}{\mathrm{~V}} \mathrm{C}_{\mathrm{Ai}}
$$

Take laplace , [CA ($\mathrm{t}=0 \mathrm{O}$) $\mathbf{0}$ initial condition]

$$
\begin{aligned}
& \quad \tau \mathrm{s} \mathrm{CA}(\mathrm{~s})+\mathrm{CA}(\mathrm{~s})=\underbrace{\frac{\mathrm{F}}{\mathrm{~F}+\mathrm{kV}} \mathrm{C}_{\mathrm{Ai}}(\mathrm{~s})}_{\mathrm{K}} \\
& \text { Transfer Function: }
\end{aligned}
$$

$$
G(s)=\frac{C_{A}(s)}{C_{A i}(s)}=\frac{K}{\tau s+1}
$$

Example 4: Mixing

V : volume of $\operatorname{tank}\left(\mathrm{m}^{3}\right)$
q : volumetric flow rate $\left(\mathrm{m}^{3} / \mathrm{s}\right)$
C_{1} : inlet sugar conc. $\left(\mathrm{kg} / \mathrm{m}^{3}\right.$)
C_{2} : outlet sugar conc. $\left(\mathrm{kg} / \mathrm{m}^{3}\right.$)
Find the model and the transfer function of this process
C_{1} : input variable (in terms of deviation variable)
C_{2} : output variable (in terms of deviation variable)

What is the transfer function of the process: $\quad \frac{C_{2}(s)}{C_{1}(s)}=?$

Mass Balance:
Rate of mass in-Rate of mass out= Rate of Mass Accum.

$$
\begin{aligned}
& \dot{m}_{\text {in }}-\dot{m}_{\text {out }}=\frac{d(m)}{d t} \\
& q C_{1}-q C_{2}=\frac{d\left(V C_{2}\right)}{d t} \\
& q\left(C_{1}-C_{2}\right)=V \frac{d\left(C_{2}\right)}{d t} \\
& \left(C_{1}-C_{2}\right)=\underbrace{\left(\frac{V}{q}\right)} \frac{d\left(C_{2}\right)}{d t} \\
& C_{1}=\tau \frac{d\left(C_{2}\right)}{d t}+C_{2}
\end{aligned}
$$

$$
\begin{aligned}
& C_{1}(s)=\tau s C_{2}(s)+C_{2}(s) \\
& C_{1}(s)=C_{2}(s)[\tau s+1] \\
& \frac{C_{2}(s)}{C_{1}(s)}=\frac{1}{[\tau s+1]}
\end{aligned}
$$

Example 5: If there are two input variables

In some cases there may be two input variables effecting the process. (Example: mixing tank with two inlet streams)
$\tau \frac{d y}{d t}+y=x$ Mathematical model of a process that is represented by a 1st order differential equation (single input variable)
$\tau \frac{d y}{d t}+y=K_{1} x_{1}+K_{2} x_{2}$
y : output variable
x : input variable
τ : (tau) time constant
K: gain \rightarrow constant

Mathematical model of a process that is represented by a 1st order differential equation (two input variables)

Example 5: If there are two input variables

Let's find the transfer function
$\tau \frac{d y}{d t}+y=K_{1} x_{1}+K_{2} x_{2}$ of this process. (take laplace)
$\tau s Y(s)-y(0)+Y(s)=K_{1} X_{1}(s)+K_{2} X_{2}(s)$
$Y(s)[\tau s+1]=K_{1} X_{1}(s)+K_{2} X_{2}(s)$
$Y(s)=\frac{K_{1}}{[\tau s+1]} X_{1}(s)+\frac{K_{2}}{[\tau s+1]} X_{2}(s)$
$\frac{Y(s)}{X_{1}(s)}=\frac{K_{1}}{[\tau s+1]}$
$\frac{Y(s)}{X_{2}(s)}=\frac{K_{2}}{[\tau s+1]}$

Example 5: If there are two input variables

$$
\begin{array}{ll}
\frac{Y(s)}{X_{1}(s)}=\frac{K_{1}}{[\tau s+1]} & \text { Transfer function I } \\
\frac{Y(s)}{X_{2}(s)}=\frac{K_{2}}{[\tau s+1]} & \text { Transfer function II }
\end{array}
$$

$Y(s)$ is equal to sum of these two transfer functions

