Physics 101: Mechanics Lecture 2

Baris EMRE

Vector vs. Scalar Review

\square All physical quantities encountered in this text will be either a scalar or a vector
\square A vector quantity has both magnitude (value + unit) and direction
\square A scalar is completely specified by only a magnitude (value + unit)

Vector and Scalar Quantities

\square Vectors

- Displacement
- Velocity (magnitude and direction!)
- Acceleration
- Force
- Momentum
\square Scalars:
- Distance
- Speed (magnitude of velocity)
- Temperature
- Mass
- Energy
- Time

To describe a vector we need more information than to describe a scalar! Therefore vectors are more complex!

Important Notation

\square How to describe vectors:

- The bold font: Vector A is A
- Or an arrow above the vector: \vec{A}
- In the pictures, we will always show vectors as arrows
- Arrows point the direction
- To describe the magnitude of a vector we will use absolute value sign: $|\vec{A}|$ or just A ,
- Magnitude is always positive, the magnitude of a vector is equal to the length of a vector.

Properties of Vectors

\square Equality of Two Vectors

- Two vectors are equal if they have the same magnitude and the same direction
- Movement of vectors in a diagram
- Any vector can be moved parallel to

- Negsativ wridequtber being affected
- Two vectors are negative if they have the same magnitude but are 180° apart (opposite directions)

$$
\overrightarrow{\mathbf{A}}=-\overrightarrow{\mathbf{B}} ; \overrightarrow{\mathbf{A}}+(-\overrightarrow{\mathbf{A}})=0
$$

Adding Vectors

\square When adding vectors, their directions must be taken into account
\square Units must be the same
\square Geometric Methods

- Use scale drawings
\square Algebraic Methods
- More convenient

Adding Vectors Geometrically (Triangle Method)

- Draw a vector with an appropriate length and a coordinate system in the specified direction
- Draw the next vector at the appropriate length and \bar{B} in the specified direction, according to the coordinate system that is parallel to the coordinate system used for "tail to tail" when the vector ends.
- The result is drawn from the original to the end of the last vector

Adding Vectors Graphically

\square When you have many
vectors, just keep
repeating the process
until all are included
\square The resultant is still drawn from the origin of the first vector to the end of the last
vector

Adding Vectors Geometrically (Polygon Method)

- Draw the first vector \vec{A} with the appropriate length and in the direction specified, with respect to a coordinate system
- Draw the next vector \vec{B} with the appropriate length and in the direction specified, with respect to the same coordinate system
- Draw a parallelogram
- The resultant is drawn as a diagonal from the origin

$$
\vec{A}+\vec{B}=\vec{B}+\vec{A}
$$

Vector Subtraction

\square Special case of vector addition

- Add the negative of the subtracted vector

$$
\overrightarrow{\mathbf{A}}-\overrightarrow{\mathbf{B}}=\overrightarrow{\mathbf{A}}+(-\overrightarrow{\mathbf{B}})
$$

\square Continue with standard vector addition procedure

Describing Vectors Algebraically

Vectors: Described by the number, units and direction!

(a)

Vectors: Can be described by their magnitude and direction. For example: Your displacement is 1.5 m at an angle of 30°.

Can be described by components? For example: your displacement is 1.28 m in the positive \times direction and 0.75 m in the positive y direction.

Components of a Vector

\square A component is a part
\square It is useful to use rectangular components

- These are the projections of the vector along the x - and y axes

Figure 3.13
Physics for Scientists and
Engineers 6th Edition,
Thomson Brooks/Cole ©
2004; Chapter 3

Components of a Vector

\square The x-component of a vector is the projection along the x -axis

$$
\cos \theta=\frac{A_{x}}{A} \quad A_{x}=A \cos \theta
$$

The y-component of a vector is the projection along the y-axis

$$
\sin \theta=\frac{A_{y}}{A} \quad A_{y}=A \sin \theta
$$

Right angle
$A_{x}>0$

$$
\vec{A}=\vec{A}_{x}+\vec{A}_{y}
$$

\square The components are the legs of the right triangle whose hypotenuse is A

$$
\begin{aligned}
& \left\{\begin{array}{l}
A_{x}=A \cos (\theta) \\
A_{y}=A \sin (\theta)
\end{array}\right. \\
& \left\{\begin{array}{l}
|\vec{A}|=\sqrt{\left(A_{x}\right)^{2}+\left(A_{y}\right)^{2}} \\
\tan (\theta)=\frac{A_{y}}{A_{x}} \text { or } \theta=\tan ^{-1}\left(\frac{A_{y}}{A_{x}}\right)
\end{array}\right.
\end{aligned}
$$

Unit Vectors

\square Components of a vector are vectors

$$
\vec{A}=\vec{A}_{x}+\vec{A}_{y}
$$

\square Unit vectors i-hat, j-hat, k-hat

$$
\hat{i} \rightarrow x \quad \hat{j} \rightarrow y \quad \hat{k} \rightarrow z
$$

Figure 3.16
Physics for Scientists and Engineers 6th Edition, Thomson Brooks/Cole © 2004; Chapter 3
\square Unit vectors used to specify direction
\square Unit vectors have a magnitude of 1
\square Then

$$
\vec{A}=A_{x} \hat{i}+A_{y} \hat{j}
$$

Magnitude + Sign Unit vector

Adding Vectors Algebraically

\square Consider two vectors

$$
\begin{aligned}
& \vec{A}=A_{x} \hat{i}+A_{y} \hat{j} \\
& \vec{B}=B_{x} \hat{i}+B_{y} \hat{j}
\end{aligned}
$$

(a)

(b)

$$
\square \vec{C}=\overrightarrow{A^{\prime}}+\vec{B}=\left(\Delta_{x}+B_{x}\right) \dot{i}+\left(A_{y}+B_{y}\right)
$$

$\square \mathrm{SO}$

$$
\int_{x}=A_{x}+B_{x}=B_{y}=B_{y}+B_{y}
$$

$$
\begin{aligned}
& \vec{A}+\vec{B}=\left(A_{x}^{\hat{i}}+A_{y} \hat{i}\right)+\left(B_{x}^{\hat{i}}+B_{y} \hat{\boldsymbol{j}}\right) \\
& =\left(A_{x}+B_{x}\right) \dot{i}_{i}^{\hat{i}}\left(A_{y}+B_{y}\right) \dot{i}^{\hat{i}}
\end{aligned}
$$

Scalar Product of Two Vectors (dot product)

\square The scalar product of two vectors is written as $\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}$

Figure 7.16
Physics for Scientists and
Engineers 6th Edition,
Thomson Brooks/Cole © 2004; Chapter 7
$\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}} \equiv A B \cos \theta$

- θ is the angle between A and B
$W=F \Delta r \cos \theta=\overrightarrow{\mathbf{F}} \cdot \Delta \overrightarrow{\mathbf{r}}$

Dot Product

- The dot product says something about how parallel two vectors are.
\square The dot product (scalar product) of two vectors can be thought of as the projection of one onto the direction of the other.

$$
\begin{aligned}
& \vec{A} \cdot \vec{B}=A B \cos \theta \\
& \vec{A} \cdot \hat{i}=A \cos \theta=A_{x}
\end{aligned}
$$

\square Components

$$
\vec{A} \cdot \vec{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}
$$

Projection of a Vector: Dot Product

- The dot product talks about how parallel two vectors are.
- The dot product of two vectors (scalar multiplication) can be

$$
\begin{aligned}
& \hat{i} \cdot \hat{j}=0 ; \hat{i} \cdot \hat{k}=0 ; \hat{j} \cdot \hat{k}=0 \\
& \hat{i} \cdot \hat{i}=1 ; \hat{j} \cdot \hat{j}=1 ; \hat{k} \cdot \hat{k}=1
\end{aligned}
$$ thought of as the reflection of one towards the other.

- Comnnnents

$$
\begin{aligned}
& \vec{A} \cdot \vec{B}=A B \cos \theta \\
& \vec{A} \cdot \hat{i}=A \cos \theta=A_{x}
\end{aligned}
$$

$$
\vec{A} \cdot \vec{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}
$$

Vector Product (Cross Product)
 $$
\vec{C}=\vec{A} \times \vec{B}
$$

- The cross product of two vectors says something about how perpendicular they are.
- Magnitude:

$$
|\vec{C}|=|\vec{A} \times \vec{B}|=A B \sin \theta
$$

- θ is smaller angle between the vectors
- Cross product of any parallel vectors = zero
- Cross product is maximum for perpendicular vectors
- Cross products of Cartesian unit vectors:

$$
\begin{aligned}
& \hat{i} \times \hat{j}=\hat{k} ; \hat{i} \times \hat{k}=-\hat{j} ; \hat{j} \times \hat{k}=\hat{i} \\
& \hat{i} \times \hat{i}=0 ; \hat{j} \times \hat{j}=0 ; \hat{k} \times \hat{k}=0
\end{aligned}
$$

Cross Product

- Direction: C perpendicular to both A and B (right-hand rule)
- Place A and B tail to tail
- Right hand, not left hand
- Four fingers are pointed along the first vector A
- "sweep" from first vector A into second vector B through the smaller angle between them
- Your outstretched thumb points the direction of C
- First practice

$$
\vec{A} \times \vec{B}=\vec{B} \times \vec{A} ?
$$

$$
\vec{A} \times \vec{B}=\vec{B} \times \vec{A} ?
$$

Figure 11.2
Physics for Scientists and
Engineers 6th Edition,
Thomson Brooks/Cole ©
2004; Chapter 11

$$
\vec{A} \times \vec{B}=-\vec{B} \times \vec{A}
$$

(a)

Summary

\square Polar coordinates of vector $\mathrm{A}(A, q)$
\square Cartesian coordinates $\left(A_{x}, A_{y}\right)$

- Relations between them:
- Beware of tan 180-degree ambiguity

$$
\begin{aligned}
& \left\{\begin{array}{l}
A_{x}=A \cos (\theta) \\
A_{y}=A \sin (\theta)
\end{array}\right. \\
& \left\{\begin{array}{l}
A=\sqrt{\left(A_{x}\right)^{2}+\left(A_{y}\right)^{2}} \\
\tan (\theta)=\frac{A_{y}}{A_{x}} \quad \text { or } \theta=\tan ^{-1}\left(\frac{A_{y}}{A_{x}}\right)
\end{array}\right.
\end{aligned}
$$

\square Unit vectors: $\mathbf{A}=A_{x} \hat{i}+A_{y} \hat{j}+A_{z} \hat{k}$
\square Addition of vectors:

$$
\begin{aligned}
& \vec{C}=\vec{A}+\vec{B}=\left(A_{x}+B_{x}\right) \hat{i}+\left(A_{y}+B_{y}\right) \hat{j} \\
& C_{x}=A_{x}+B_{x} \quad C_{y}=A_{y}+B_{y}
\end{aligned}
$$

\square Scalar multiplication of a vector: $a \mathbf{A}=a A_{x} \hat{i}+a A_{y} \hat{j}$
\square Product of two vectors: scalar product and cross product

- Dot product is a scalar: $\vec{A} \cdot \vec{B}=A B \cos \theta=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}$
- Cross product is a vector $(\perp \vec{A}$ and $\vec{B})$: $\quad|\vec{A} \times \vec{B}|=A B \sin \theta$

