Physics 101: Mechanics Lecture 4

Baris EMRE

Motion in Two Dimensions

- Go over vector and vector algebra
- Displacement and position in 2-D
- Average and instantaneous velocity in 2-D
- Average and instantaneous acceleration in 2-D
- Projectile motion
- Uniform circle motion
- Relative velocity*

Vector and its components

The components are the legs of the right triangle whose hypotenuse is A

$$\begin{cases} A_x = A\cos(\theta) \\ A_y = A\sin(\theta) \end{cases}$$

$$\begin{cases} \left| \vec{A} \right| = \sqrt{(A_x)^2 + (A_y)^2} \\ \tan(\theta) = \frac{A_y}{A_x} \quad \text{or} \quad \theta = \tan^{-1} \left(\frac{A_y}{A_x} \right) \end{cases}$$

$$\vec{A} = \vec{A}_x + \vec{A}_y$$

Motion in two dimensions

- Kinematic variables in one dimension
 - Position: x(t) m
 - Velocity: v(t) m/s
 - Acceleration: a(t) m/s²
- Kinematic variables in three dimensions
 - Position: $\vec{r}(t) = x\hat{i} + y\hat{j} + z\hat{k}$ m
 - Velocity: $\vec{v}(t) = v_x \hat{i} + v_y \hat{j} + v_z \hat{k}$ m/s
 - Acceleration: $\vec{a}(t) = a_x \hat{i} + a_y \hat{j} + a_z \hat{k}$ m/s²

All are vectors: have direction and magnitudes

Position and Displacement

In one dimension

 $\Delta x = x_2(t_2) - x_1(t_1)$

$$x_1(t_1) = -4.0 \text{ m}, x_2(t_2) = +2.0 \text{ m}$$

 $\Delta x = +2.0 \text{ m} + 4.0 \text{ m} = +6.0 \text{ m}$

In two dimensions

- Position: the position of an object is described by its position vector $\vec{r}(t)$ always points to particle from origin.
- Displacement: $\Delta \vec{r} = \vec{r}_2 \vec{r}_1$

$$\Delta \vec{r} = (x_2 \hat{i} + y_2 \hat{j}) - (x_1 \hat{i} + y_1 \hat{j})$$

= $(x_2 - x_1)\hat{i} + (y_2 - y_1)\hat{j}$
= $\Delta x \hat{i} + \Delta y \hat{j}$

Average & Instantaneous Velocity

• Average velocity $\vec{v}_{avg} \equiv \frac{\Delta \vec{r}}{\Delta t}$

$$\vec{v}_{avg} = \frac{\Delta x}{\Delta t}\hat{i} + \frac{\Delta y}{\Delta t}\hat{j} = v_{avg,x}\hat{i} + v_{avg,y}\hat{j}$$

Instantaneous velocity

$$\vec{v} \equiv \lim_{t \to 0} \vec{v}_{avg} = \lim_{t \to 0} \frac{\Delta \vec{r}}{\Delta t} = \frac{d\vec{r}}{dt}$$
$$\vec{v} = \frac{d\vec{r}}{dt} = \frac{dx}{dt}\hat{i} + \frac{dy}{dt}\hat{j} = v_x\hat{i} + v_y\hat{j}$$

 \square v is tangent to the path in x-y graph;

Average & Instantaneous Acceleration

Average acceleration

$$\vec{a}_{avg} \equiv \frac{\Delta \vec{v}}{\Delta t}$$

$$\vec{a}_{avg} = \frac{\Delta v_x}{\Delta t}\hat{i} + \frac{\Delta v_y}{\Delta t}\hat{j} = a_{avg,x}\hat{i} + a_{avg,y}\hat{j}$$

Figure 4.1 Physics for Scientists and Engineers 6th Edition, Thomson Brooks/Cole © 2004; Chapter 4

Instantaneous acceleration

$$\vec{a} \equiv \lim_{t \to 0} \vec{a}_{avg} = \lim_{t \to 0} \frac{\Delta \vec{v}}{\Delta t} = \frac{d\vec{v}}{dt} \qquad \vec{a} = \frac{d\vec{v}}{dt} = \frac{dv_x}{dt} \hat{i} + \frac{dv_y}{dt} \hat{j} = a_x \hat{i} + a_y \hat{j}$$

- The magnitude of the velocity (the speed) can change
- The direction of the velocity can change, even though the magnitude is constant
- Both the magnitude and the direction can change

Motion in two dimensions

Motions in three dimensions are independent components
 Constant acceleration equations

$$\vec{v} = \vec{v}_0 + \vec{a}t$$
 $\vec{r} - \vec{r} = \vec{v}_0 t + \frac{1}{2}\vec{a}t^2$

Constant acceleration equations hold in each dimension

$$v_{x} = v_{0x} + a_{x}t$$

$$v_{y} = v_{0y} + a_{y}t$$

$$x - x_{0} = v_{0x}t + \frac{1}{2}a_{x}t^{2}$$

$$y - y_{0} = v_{0y}t + \frac{1}{2}a_{y}t^{2}$$

$$v_{x}^{2} = v_{0x}^{2} + 2a_{x}(x - x_{0})$$

$$v_{y}^{2} = v_{0y}^{2} + 2a_{y}(y - y_{0})$$

t = 0 beginning of the process;
\$\vec{a} = a_x \hlow{i} + a_y \hlow{j}\$ where \$a_x\$ and \$a_y\$ are constant;
Initial velocity \$\vec{v}_0 = v_{0x} \hlow{i} + v_{0y} \hlow{j}\$ initial displacement \$\vec{r}_0 = x_0 \hlow{i} + y_0 \hlow{j}\$;

Projectile Motion

- x- horizontal, y- vertical (up +)
- Try to pick $x_0 = 0$, $y_0 = 0$ at t = 0
- Horizontal motion + Vertical motion
- Horizontal: $a_x = 0$, constant velocity motion
- $a_y = -g = -9.8 \text{ m/s}^2, v_{0y} = 0$ Vertical:
- **Equations**:

Types of Projectiles

Horizontal
 Vertical

$$v_x = v_{0x} + a_x t$$
 $v_y = v_{0y} + a_y t$
 $x - x_0 = v_{0x}t + \frac{1}{2}a_x t^2$
 $y - y_0 = v_{0y}t + \frac{1}{2}a_y t^2$
 $v_x^2 = v_{0x}^2 + 2a_x(x - x_0)$
 $v_y^2 = v_{0y}^2 + 2a_y(y - y_0)$

Projectile Motion

$$v_x = v_{0x}$$
$$x = x_0 + v_{0x}t$$

$$v_{y} = v_{0y} - gt$$
$$y = y_{0} + v_{0y}t - \frac{1}{2}gt^{2}$$

Horizontal

Vertical

□ take
$$x_0 = 0$$
, $y_0 = 0$ at $t = 0$

- Horizontal motion + Vertical motion
- □ Horizontal: $a_x = 0$, constant velocity motion
- Vertical: $a_y = -g = -9.8 \text{ m/s}^2$
- x and y are connected by time t
- y(x) is a parabola

Projectile Motion

- Horizontal: $a_x = 0$ and vertical: $a_y = -g$.
- Try to pick $x_0 = 0$, $y_0 = 0$ at t = 0.
- Velocity initial conditions:
 - v_0 can have x, y components.
 - v_{0x} is constant usually.
 - *v*_{0v} changes continuously.
- Equations:

$$v_{0x} = v_0 \sin \theta_0 \qquad v_{0x} = v_0 \cos \theta_0$$

Horizontal

Vertical

- $v_{x} = v_{0x} \qquad v_{y} = v_{0y} gt$ $x = x_{0} + v_{0x}t \qquad y = y_{0} + v_{0y}t \frac{1}{2}gt^{2}$

Trajectory of Projectile Motion

• $\theta_0 = 0$ and $\theta_0 = 90$?

What is *R* and *h* ?

Projectile Motion at Various Initial Angles

- Complementary values of the initial angle result in the same range
 - The heights will be different
- The maximum range occurs at a projection angle of 45°

 $R = \frac{v_0^2 \sin 2\phi}{2}$ g

Figure 4.11 Physics for Scientists and Engineers 6th Edition, Thomson Brooks/Cole © 2004; Chapter 4

Summary

D Position $\vec{r}(t) = x\hat{i} + y\hat{j}$ • Average velocity $\vec{v}_{avg} = \frac{\Delta \vec{r}}{\Delta t} = \frac{\Delta x}{\Delta t} \hat{i} + \frac{\Delta y}{\Delta t} \hat{j} = v_{avg,x} \hat{i} + v_{avg,y} \hat{j}$ Instantaneous velocity $v_x \equiv \frac{dx}{dt}$ $v_y \equiv \frac{dy}{dt}$ $\vec{v}(t) = \lim_{t \to 0} \frac{\Delta \vec{r}}{\Delta t} = \frac{d\vec{r}}{dt} = \frac{dx}{dt}\hat{i} + \frac{dy}{dt}\hat{j} = v_x\hat{i} + v_y\hat{j}$ $a_x \equiv \frac{dv_x}{dt} = \frac{d^2x}{dt^2} \qquad a_y \equiv \frac{dv_y}{dt} = \frac{d^2y}{dt^2}$ Acceleration $\vec{a}(t) = \lim_{t \to 0} \frac{\Delta \vec{v}}{\Delta t} = \frac{d\vec{v}}{dt} = \frac{dv_x}{dt}\hat{i} + \frac{dv_y}{dt}\hat{j} = a_x\hat{i} + a_y\hat{j}$ \square $\vec{r}(t)$, $\vec{v}(t)$, and $\vec{a}(t)$ are not same direction.