Physics 101: Mechanics Lecture 5

Circular Motion: Observations

Object moving along a curved path with constant speed

Magnitude of velocity: same
Direction of velocity: changing

Velocity: changing
Acceleration is NOT zero!

Net force acting on an object is NOT zero

"Centripetal force"

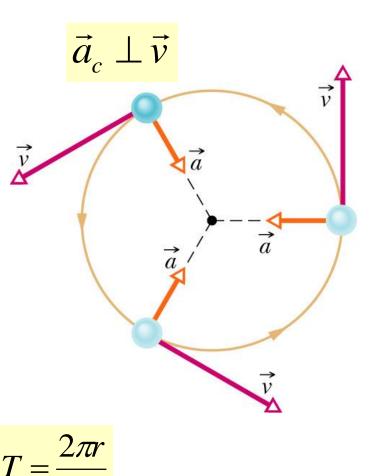
Figure 4.17 Physics for Scientists and Engineers 6th Edition, Thomson Brooks/Cole © 2004; Chapter 4

F_{net} = mā

Figure 6.2 Physics for Scientists and Engineers 6th Edition, Thomson Brooks/Cole © 2004; Chapter 6

Uniform circular motion

Uniform Circular Motion



Uniform Circular Motion

- Velocity:
 - Magnitude: constant v
 - The direction of the velocity is tangent to the circle
- Acceleration:
 - Magnitude:
 - directed toward the center of the circle of motion

 a_{c}

- Period:
 - time interval required for one complete revolution of the particle

V

Relative Velocity

Figure 4.22 Physics for Scientists and Engineers 6th Edition, Thomson Brooks/Cole © 2004; Chapter 4

Physics for Scientists and Engineers 6th Edition, Thomson Brooks/Cole © 2004;

Figure 4.23 Physics for Scientists and Engineers 6th Edition, Thomson Brooks/Cole © 2004; Chapter 4

$$\mathbf{r}' = \mathbf{r} - \mathbf{v}_0 t \qquad \frac{d\mathbf{r}'}{dt} = \frac{d\mathbf{r}}{dt} - \mathbf{v}_0 \qquad \frac{d\mathbf{v}'}{dt} = \frac{d\mathbf{v}}{dt} - \frac{d\mathbf{v}_0}{dt}$$
$$\mathbf{v}' = \mathbf{v} - \mathbf{v}_0$$

Because \mathbf{v}_0 is constant, $d\mathbf{v}_0/dt = 0$. Therefore, we conclude that $\mathbf{a}' = \mathbf{a}$ because $\mathbf{a}' = d\mathbf{v}'/dt$ and $\mathbf{a} = d\mathbf{v}/dt$.