FDE 307 Mass Transfer and Unit Operations

CONVECTIVE MASS TRANSFER

- Convective mass transfer involves the transport of material between a boundary surface and a moving fluid or between two immiscible moving fluids separated by a mobile interface.
- There are two different cases of convective mass transfer:
- 1. Mass transfer takes place only in a single phase either to or from a phase boundary, as in sublimation of naphthalene (solid form) into the moving air.
- 2. Mass transfer takes place in the two contacting phases as in extraction and absorption.

The rate equation for convective mass transfer, generalized in a manner analogous to Newton's law of cooling, is

$$N_A = k_c \Delta C_A$$

where N_A, is the molar-mass flux of species A, ∆c_A is the concentration difference between the boundary surface concentration and the average concentration of the diffusing species in the moving fluid stream, and k_c is the convective mass-transfer coefficient.

CONVECTIVE MASS TRANSFER COEFFICIENTS

 If there is a solute which dissolves into a moving fluid, the convective mass transfer coefficient can be defined as

$$N_A = k_c (C_{As} - C_A)$$

where N_A represents the moles of solute A leaving the interface per unit time and unit interfacial area, c_{AS} represents the composition of the solute in the fluid at the interface, and the quantity c_A represents the composition at some point within the fluid phase. The convective mass transfer coefficient k_c is a function of geometry of the system and the velocity and properties of the fluid similar to the heat transfer coefficient, h.

- Since the concentration can be defined in terms of mole fraction for a liquid or a gas and in terms of pressure for a gas, the equation for convective fluxcan be rewritten in several ways.
- For gases:

$$N_{A} = k_{c}'(C_{A1} - C_{A2}) = k_{G}'(p_{A1} - p_{A2}) = k_{y}'(y_{A1} - y_{A2})$$

For liquids:

$$N_{A} = k'_{c}(C_{A1} - C_{A2}) = k'_{L}(C_{A1} - C_{A2}) = k'_{x}(X_{A1} - X_{A2})$$

 For the case of A diffusing through stagnant B (N_B=0) for steady state conditions;

$$N_{A} = \frac{k_{c}}{X_{BM}} (C_{A1} - C_{A2}) = k_{c} (C_{A1} - C_{A2})$$

For gases:

$$N_{A} = k_{c} (C_{A1} - C_{A2}) = k_{G} (p_{A1} - p_{A2}) = k_{y} (y_{A1} - y_{A2})$$

For liquids:

$$N_{A} = k_{c} (C_{A1} - C_{A2}) = k_{L} (C_{A1} - C_{A2}) = k_{x} (X_{A1} - X_{A2})$$

Table. Conversions between mass transfer coefficients

Gases	$k_{c}'C = k_{c}'\frac{P}{RT} = k_{c}\frac{p_{BM}}{RT} = k_{G}'P = k_{G}p_{BM} = k_{y}y_{BM} = k_{y}' = k_{c}y_{BM}c = k_{G}y_{BM}P$		
Liquids	$k_{c}C = k_{L}C = k_{L}X_{BM}C = k_{L}\rho/M = k_{x} = k_{x}X_{BM}$		
	p:density of liquid		
	M:molecular weight		

Table. Units of mass transfer coefficients

	SI Units	Cgs Units	English Units
k_c , k_L , k_c , k_L	m/ s	cm/s	ft / h
$k_{x}, k_{y}, k_{x}', k_{y}'$	$\frac{kgmol}{s \cdot m^2 \cdot molfrac}$	$\frac{gmol}{s \cdot cm^2 \cdot molfrac}$	$\frac{lbmol}{h \cdot ft^2 \cdot molfrac}$
k _g , k _g	$\frac{kgmol}{s \cdot m^2 \cdot Pa} or \frac{kgmol}{s \cdot m^2 \cdot atm}$	$\frac{gmol}{s \cdot cm^2 \cdot atm}$	$\frac{lbmol}{h \cdot ft^2 \cdot atm}$

