EE-202 Electronics Chapter 3: Diode Applications **Series and Parallel** Configurations

Load-Line Analysis

- Shows all current (I_D) versus voltages (E) applied to the diode (V_D) .
- Intersecting point of the load line and the characteristic curve gives the Q-point,

Series Diode Configurations

For forward Bias;

- Si Diode: $V_D = 0.7V$
- Ge Diode: $V_D = 0.3V$

Analysis

- $V_D = .07V$ (or $V_D = E$ if E < .7V)
- $\mathbf{V}_{\mathbf{R}} = \mathbf{E} \mathbf{V}_{\mathbf{D}}$
- $\mathbf{I}_{\mathbf{D}} = \mathbf{I}_{\mathbf{R}} = \mathbf{I}_{\mathbf{T}} = \mathbf{V}_{\mathbf{R}} / \mathbf{R}$

Series Diode Configurations

For Reverse Bias:

Diodes behave as open circuits

Analysis

• $\mathbf{V}_{\mathbf{D}} = \mathbf{E}$

•
$$V_R = 0 V$$

• $\mathbf{I}_{\mathbf{D}} = \mathbf{0} \mathbf{A}$

Parallel Diode Configurations

$$V_{D} = 0.7 V$$

$$V_{D1} = V_{D2} = V_{O} = 0.7 V$$

$$V_{R} = 9.3 V$$

$$I_{R} = \frac{E - V_{D}}{R} = \frac{10 V - 0.7 V}{1 k \Omega} = 9.7 m$$

$$I_{D1} = I_{D2} = \frac{9.7 mA}{2} = 4.85 mA$$

Series Diode Clippers

The diode in a series clipper circuit "clips" any voltage

- A reverse-biasing polarity
- A forward-biasing polarity less than 0.7V for a silicon diode

Biased Clippers

Adding a DC source to diode changes the effective forward bias.

Parallel Clippers

The diode in a parallel clipper circuit "clips" any voltage that forward bias it.

A DC bias can change the clipping level.

Clampers

A diode and capacitor can be combined to "clamp" an AC signal to a specific DC level.

Biased Clamper Circuits

The DC source can adjust the DC clamping level.

Zener Diodes

The Zener is a diode operated in reverse bias at the Zener Voltage (V_z) .

- When $V_i \ge V_z$
 - The Zener is on
 - ZenerVoltage V_z
 - Zener current: $I_Z = I_R I_{RL}$
- When $V_i < V_z$
 - The Zener is off
 - The Zener acts as an open circuit

