EE-202 Electronics **Chapter 4: Diode** Applications Half and Full-Wave rectifiers Zeners

Load-Line

The load line shows all possible current via voltage conditions.

Load line and the characteristic curve intersects in the Q-point,

Half-Wave Rectification

The diode conducts when forward biased.

Full-Wave Rectification

Full-wave rectification produces a greater DC output:

- Half-wave: $V_{dc} = 0.318V_m$
- Full-wave: $V_{dc} = 0.636V_m$

Full-Wave Rectification

Bridge Rectifier

- Four diodes are required
- $V_{DC} = 0.636 \text{ Vm}$

Full-Wave Rectification

Center-Tapped Transformer Rectifier

Requires

- Two diodes
- Center-tapped transformer

 $V_{DC} = 0.636(V_m)$

Zener Diodes

The Zener is a diode operated in reverse bias at the Zener Voltage (V_z) .

- $\bullet \quad \text{When} \quad \mathbf{V}_{i} \ge \mathbf{V}_{z}$
 - The Zener is on
 - Voltage across the Zener is V_z
 - Zener current: $I_Z = I_R I_{RL}$
 - The Zener Power: $P_Z = V_Z I_Z$
- When $V_i < V_z$
 - The Zener is off
 - The Zener acts as an open circuit

Zener Resistor Values

If R is too large, the Zener diode cannot conduct. The minimum current is given by:

 $I_{Lmin} = I_R - I_{ZK}$

The *maximum* value of resistance is:

 $R_{Lmax} = \frac{V_L}{I_{Lmin}}$

If R is too small, maximum current for the circuit :

$$I_{Lmax} = \frac{V_L}{R_L} = \frac{V_Z}{R_{Lmin}}$$

The *minimum* value of resistance is:

$$R_{Lmin} = \frac{RV_Z}{V_i - V_Z}$$

Voltage-Multiplier Circuits

- Voltage Doubler
- Voltage Tripler
- Voltage Quadrupler

Voltage Doubler

Output of the half-wave voltage doubler's:

$$V_{out} = V_{C2} = 2V_m$$

V_m = peak secondary voltage of the transformer