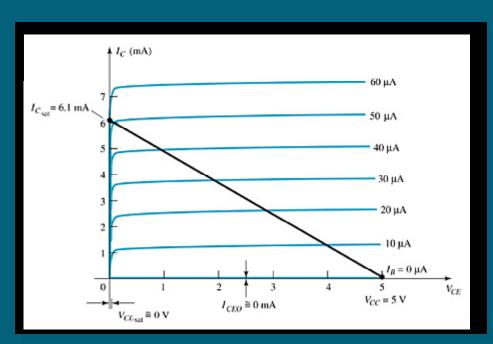

EE-202 Electronics-I-

Chapter:9
BJT DC Biasing

Miscellaneous Bias Configurations

Transistor Switching Circuits

Transistors can be used as electronic switches, when only the DC source is applied


Switching Circuit Calculations

Saturation current:

$$I_{Csat} = \frac{V_{CC}}{R_C}$$

For saturation:

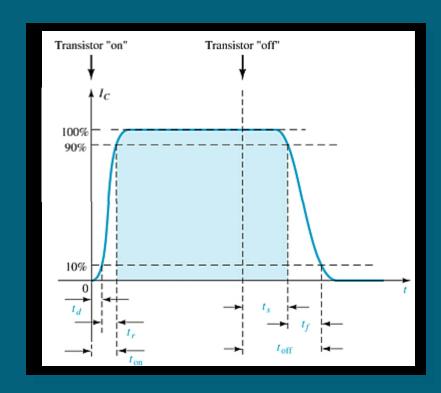
$$I_B > \frac{I_{Csat}}{\beta_{dc}}$$

Emitter-collector resistance:

saturation

$$R_{sat} = \frac{V_{CEsat}}{I_{Csat}}$$

cutoff


$$\mathbf{R_{cutoff}} = \frac{\mathbf{V_{CC}}}{\mathbf{I_{CEO}}}$$

Switching Time

Transistor switching times:

$$t_{on} = t_r + t_d$$

$$t_{on} = t_r + t_d$$

 $t_{off} = t_s + t_f$

Troubleshooting Hints

- Approximate voltages
 - $V_{BE} \cong 0.7 \text{ V}$ for silicon transistors
 - $V_{CE} \cong 25\%$ to 75% of V_{CC}
- Open and short circuits can be tested with an ohmmeter.
- Test the solder joints.
- A transistor tester can be used to test the transistor.

PNP Transistors

The analysis for *pnp* transistor biasing circuits is the same for *npn* transistor circuits. The only difference is the currents are flowing in the opposite direction.