EE-202 Electronics-I-

Chapter 10 Field-Effect Transistors JFET

FET (Field-Effect Transistors) - BJTs (Bipolar Junction Transistors).

Similarities:

- Amplifiers
- Switching devices
- Impedance matching circuits

Differences:

- FETs are voltage controlled devices, BJTs are current controlled devices.
- FETs have a higher input impedance, BJTs have higher gains.
- FETs are less sensitive to temperature variations and they are more easily integrated on ICs.
- FETs are generally more sensitive to static than BJTs.

•JFET— Junction Field-Effect Transistor

•MOSFET — Metal-Oxide Field-Effect Transistor

D-MOSFET — Depletion MOSFET
E-MOSFET — Enhancement MOSFET

JFET Construction

There are two types of JFETs

•*n*-channel •*p*-channel

The n-channel is more widely used.

There are three terminals.

Drain (D) and source (S) are connected to the *n*-channel
Gate (G) is connected to the *p*-type material

JFET Operating Characteristics

Three basic operating conditions for a JFET:

- $V_{GS} = 0$, V_{DS} increasing to some positive value
- $V_{GS} < 0$, V_{DS} at some positive value
- Voltage-controlled resistor

JFET Operating Characteristics V_{GS} = 0, V_{DS} increasing to some positive value

When $V_{GS} = 0$ and V_{DS} is increased from 0 to a more positive voltage;

- The depletion region between p-gate and n-channel increases
- Increasing the depletion region, decreases the size of the n-channel
- Increasing in the n-channel resistance, the I_D current increases.

JFET Operating Characteristics V_{GS} = 0, V_{DS} increasing to some positive value: Pinch Off

 $V_{GS} = 0$ and V_{DS} is increased to a more positive voltage, the depletion zone gets so large that it pinches off the n-channel.

The current in the n-channel (I_D) would drop to 0 A, but it does just the opposite-as V_{DS} increases, so does I_D .

JFET Operating Characteristics V_{GS} = 0, V_{DS} increasing to some positive value: Saturation

At the pinch-off point:

- Increasing in V_{GS} does not produce any increasing in I_D.
- V_{GS} at pinch-off is denoted as V_{p} .
- I_D is at saturation or maximum. It is referred to as I_{DSS}.
- The ohmic value of the channel is maximum.

p-Channel JFETS

The *p*-channel JFET is similar to the *n*-channel JFET, except the polarities and currents are reversed.

JFET Symbol

JFET Transfer Curve

This graph shows the value of I_D for a given value of V_{GS} .

