
Static Electric Currents 

Consider a group of charged particles (each has charge q ) of number density N (𝑚−3) 

moving across an elemental surface S�̂� (m
2
) with velocity �⃗� = 𝑣𝑣 (m/sec) in 𝑣 −direction. 

Within a time interval Δt, the amount of charge ΔQ passing through the surface is equal to the 

total charge within a differential parallel-piped of volume: 

  

𝚫𝑽 = �⃗⃗⃗�. 𝚫𝒕 • 𝑺�̂�  

  

𝚫𝑸 = 𝚫𝑽. 𝑵𝒒  

  

𝚫𝑸 = 𝒗. 𝑺. 𝚫𝒕. 𝑵𝒒  

  

𝑰 =
𝚫𝑸

𝚫𝒕
=

𝒗. 𝑺. 𝚫𝒕. 𝑵𝒒

𝚫𝒕
= 𝒗. 𝑺. 𝑵𝒒 

 

  

Interpretting 𝐼𝑣 as the flux of current density 𝐽 = 𝐽𝑣 through surface 𝑆  

 

 

𝑰 = ∫ �⃗� • 𝒅𝑺⃗⃗⃗⃗⃗⃗

𝑺

= ∫ 𝑱�̂� • �̂�𝒅𝑺

𝑺

= 𝑱. 𝑺 

 

  

𝑱 =
𝑰

𝑺
  

 

  



�⃗� = 𝑱�̂� =
𝑰

𝑺
�̂� 

 

    

 

 

Convection Currents 

Convection currents result from motion of charged particles (e.g. electrons, ions) in “vacuum” 

(e.g. cathode ray tube), involving with mass transport but without collision. In vacuum-tube 

diodes, some of the electrons boiled away from the incandescent cathode are attracted to the 

anode due to theexternal electric field, resulting in a convection current flow. Find the relation 

between the steady-state current density J and the bias voltage V0 . Assume the electrons 

leaving the cathode have zero initial velocity. This is the “space-charge limited condition”, 

arising from the fact that a cloud of electrons (space charges) is formed near the hot cathode, 

repulsing most of the newly emitted electrons. 

 

Conduction (drift) currents 

The electrons of conductors only partially fill the conduction band: 

 



 These electrons can be easily released from parent nuclei as free electrons by thermal 

excitation at room temperatures. The velocities of individual free electrons are high in 

magnitude (~105 m/s at 300K) but random in direction, resulting in no net “drift” motion nor 

net current. 

In the presence of static electric field E , the free electrons experience:  

Electric force: �⃗�𝑒 = − 𝑞𝐸 ⃗⃗⃗⃗   (acceleration)  

Frictional force  
�⃗�𝑓 = − 

𝑚𝑒𝑣 ⃗⃗⃗ ⃗𝑑

𝜏
 

𝑚𝑒: 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 

𝑣 ⃗⃗⃗ ⃗𝑑: 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑟𝑖𝑓𝑡 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 

𝜏: 𝑚𝑒𝑎𝑛 𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑑𝑢𝑒 𝑡𝑜 𝑐𝑟𝑦𝑠𝑡𝑎𝑙 𝑙𝑎𝑡𝑡𝑖𝑐𝑒 

 

 

 

  

 

In steady state, these two forces balance with each other (Drude model), ⇒ 

 
�⃗�𝑒 = − 𝑞𝐸 ⃗⃗⃗⃗ = �⃗�𝑓 = − 

𝑚𝑒𝑣 ⃗⃗⃗ ⃗𝑑

𝜏
 

 

⇒ 
�⃗�𝑒 = − 𝑞�⃗⃗� = �⃗�𝑓 = − 

𝑚𝑒𝑣 ⃗⃗⃗ ⃗𝑑

𝜏
 

 

⇒  𝑣 ⃗⃗⃗ ⃗𝑑 =
𝑞𝜏

𝑚𝑒
�⃗⃗� = �⃗⃗�  

 
𝜇𝑒 =

𝑞𝜏

𝑚𝑒
 

𝜇𝑒: 𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠 

𝑚2

𝑉. 𝑠𝑒𝑐
 

 

 

𝜇𝑒 defines describes how easy an external electric field can influence the motion of electrons 

in the conductor. For typical conductors and strength of electric fields, |𝜇𝑒|~
𝑚𝑚

𝑠𝑒𝑐
 and is 



much slower than the speed of individual electrons. The conduction current density is:

  

 𝐽𝑒 = 𝜎𝐸 ⃗⃗⃗⃗  (
𝑨

𝒎𝟐
) 

 

conductivity: 𝜎 = 𝜌𝑣𝑒𝜇𝑒 
(

𝟏

𝛀𝒎
) 

 

free electron density: 𝜌𝑣𝑒 
(

𝑪𝒐𝒖𝒍

𝒎𝟑
) 

 

    

For semiconductors, both electrons and holes contribute to conduction currents,   

⇒ 𝜎 = 𝜌𝑣𝑒𝜇𝑒 + 𝜌𝑣ℎ𝜇ℎ  

 

Typical carrier number densities, mobilities, conductivities (below THz) 

 𝜇𝑒 𝜇ℎ 𝑁𝑒 (m-3) 𝑁ℎ (m-3) σ (S/m) 

pure Ge 0.39 0.19 2.4x1019 2.4x1019 2.2 

pure Si 0.14 0.05 1.4x1016 1.4x1016 4.4x10-4 

Cu 0.0032 ― 1.13x1029 ― 5.8x107 

Al 0.0015 ― 1.46x1029 ― 3.5x107 

Ag 0.005 ― 7.74x1028 ― 6.2x107 

Au     4.5x107
 

 

Microscopic and Macroscopic Current Laws 

𝐽𝑒 = 𝜎𝐸 ⃗⃗⃗⃗  is the microscopic form of Ohm’s law. Consider a piece of (imperfect) conductor of 

arbitrary shape and homogeneous (finite) conductivity σ: 

 

 

 



 

The potential difference between the two equipotential end faces A1 , A2  is:  

 

 

∆𝑽 = 𝑽(𝑨𝟏) − 𝑽(𝑨𝟐) = − ∫ �⃗⃗⃗�

𝐴2

𝐴1

• 𝒅𝒍⃗⃗⃗⃗⃗⃗  

 

 

where L is some path starting from A1 and ending at A2 . The total current flowing through 

some surface A between A1  and A2:  

 

𝑰 = ∫ �⃗� • 𝒅𝑺⃗⃗⃗⃗⃗⃗

𝑨

 

 

 

The resistance R of the conductor is defined as:       

 

𝑹 =
∆𝑽

𝑰
=

− ∫ �⃗⃗⃗�
𝐴2

𝐴1

• 𝒅𝒍⃗⃗⃗⃗⃗⃗

∫ �⃗� • 𝒅𝑺⃗⃗⃗⃗⃗⃗
𝑨

  

      

which is a constant independent of  ∆𝑽 and 𝑰 (but depending on the geometry and 

material of the conductor). For a conductor of “uniform” cross-sectional area 𝑆, assuming 

conduction current density �⃗� which is driven by a conservative electric field E (created by 

charges.alone).: 

�⃗� = 𝝈�⃗⃗⃗� ⇒ �⃗⃗⃗� =
�⃗�

𝝈
 

∮ �⃗⃗⃗�

𝑪

• 𝒅𝒍⃗⃗⃗⃗⃗ = 𝟎 = ∮
𝑱

𝝈
𝑪

• 𝒅𝒍⃗⃗⃗⃗⃗ 

No steady loop current can exist. Therefore, a non-conservative field produced by batteries, 

generators …etc. is required to drive charge carriers in a closed loop. 



 

 

 

 

Consider an open-circuited battery, where some positive and negative charges are 

accumulated in electrodes 1 and 2 due to chemical reaction. Inside the battery, an impressed 

field Ei  (not an electric field, but a “force”) produced by chemical reaction balances the 

electrostatic field E arising from the accumulated charges, preventing charges from further 

movement.  

∆𝑽 = 𝑽(𝟐) − 𝑽(𝟏) = − ∫ �⃗⃗⃗�

2

1

• 𝒅𝒍⃗⃗⃗⃗⃗⃗  

 

∆𝑽 = 𝑽(𝟐) − 𝑽(𝟏) = − ∫ �⃗⃗⃗�

+

−

• 𝒅𝒍⃗⃗⃗⃗⃗⃗  

 

𝒆𝒎𝒇 = ∫ �⃗⃗⃗�𝒊

+

−

• 𝒅𝒍⃗⃗⃗⃗⃗⃗  

 

 

The electromotive force (emf), defined as the line integral of Ei from electrode 2 to electrode 

1 describes the strength of the non-conservative source: 

=> E= -Ei inside the battery. 



 

∮ �⃗⃗⃗� •

𝑪

𝒅𝒍⃗⃗⃗⃗⃗ = 𝟎 = ( ∫ �⃗⃗⃗�

𝑖𝑛𝑠𝑖𝑑𝑒

• 𝒅𝒍⃗⃗⃗⃗⃗⃗ ) + ( ∫ �⃗⃗⃗�

𝑜𝑢𝑡𝑠𝑖𝑑𝑒

• 𝒅𝒍⃗⃗⃗⃗⃗⃗ ) 

 

 

= (∫ �⃗⃗⃗�

−

+

• 𝒅𝒍⃗⃗⃗⃗⃗⃗ ) + (∫ �⃗⃗⃗�

+

−

• 𝒅𝒍⃗⃗⃗⃗⃗⃗ ) 

 

 

= (∫ �⃗⃗⃗�

−

+

• 𝒅𝒍⃗⃗⃗⃗⃗⃗ ) − ∆𝑽 

 

 

= (∫ −�⃗⃗⃗�

+

−

• 𝒅𝒍⃗⃗⃗⃗⃗) − ∆𝑽 

 

 

= (∫ �⃗⃗⃗�𝒊

+

−

• 𝒅𝒍⃗⃗⃗⃗⃗⃗ ) − ∆𝑽 

 

𝟎 = 𝒆𝒎𝒇 − ∆𝑽  

𝒆𝒎𝒇 = ∆𝑽  

𝒆𝒎𝒇 = ∆𝑽 = (∫ �⃗⃗⃗�𝒊

+

−

• 𝒅𝒍⃗⃗⃗⃗⃗⃗ ) = − ∫ �⃗⃗⃗�

+

−

• 𝒅𝒍⃗⃗⃗⃗⃗⃗  

 

If the two terminals are connected by a uniform conducting wire of resistance 𝑹 , the total 

field:  

 
�⃗⃗⃗�𝒕𝒐𝒕𝒂𝒍 = {

�⃗⃗⃗� + �⃗⃗⃗�𝒊 = 𝟎

�⃗⃗⃗� 
 

, 𝒊𝒏𝒔𝒊𝒅𝒆 𝒕𝒉𝒆 𝒃𝒂𝒕𝒕𝒆𝒓𝒚 

, 𝒐𝒖𝒕𝒔𝒊𝒅𝒆 𝒕𝒉𝒆 𝒃𝒂𝒕𝒕𝒆𝒓𝒚 

 

    

drives a loop current 𝐼 of current density 𝐽 =
𝑰
𝑺

�̂� and  

∆𝑽 = − ∫ �⃗⃗⃗�

2

1

• 𝒅𝒍⃗⃗⃗⃗⃗⃗ = − ∫ �⃗⃗⃗�

+

−

• 𝒅𝒍⃗⃗⃗⃗⃗⃗ = − ∫
�⃗⃗�

𝝈

+

−

• 𝒅𝒍⃗⃗⃗⃗⃗⃗  

 



∆𝑽 = − ∫

𝑰
𝑺

�̂�

𝝈

0

𝐿

• 𝒅𝒍⃗⃗⃗⃗⃗⃗ = + ∫

𝑰
𝑺

�̂�

𝝈

𝐿

0

• 𝒅𝒍⃗⃗⃗⃗⃗⃗  

 

∆𝑽 = + ∫

𝑰
𝑺

�̂�

𝝈

𝐿

0

• �̂�𝒅𝒍 =
𝑰

𝝈𝑺
∫ 𝒅𝒍

𝐿

0

=
𝑰

𝝈𝑺
𝑳

𝝈𝑺
 

 

𝑹 =
∆𝑽

𝑰
=

𝑳

𝝈𝑺
 (𝛀) 

 

    

 
For a closed path with multiple sources and resistors, we get the Kirchhoff’s voltage law: 

∑ ∆𝑽𝒌

𝒌

= 𝑹𝒌𝑰𝒌 Kirchhoff’s Voltage Law 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Equation of continuity and Kirchhoff’s Current Law: 

Consider a net charge Q confined in a volume V, bounded by a closed surface S . Based on the 

principle of conservation of charge (a fundamental postulate of physics), a net current flowing 

out of V must result in decrease of the enclosed charge: 

𝑰 = −
𝒅𝑸

𝒅𝒕
 

 

  

∮ �⃗�

𝑺

• 𝒅𝑺⃗⃗⃗⃗⃗⃗ = −
𝒅

𝒅𝒕
(∫ 𝝆𝒗𝒅𝑽

𝑽

) 

 

  

∮ �⃗�

𝑺

• 𝒅𝑺⃗⃗⃗⃗⃗⃗ = (∫ −
𝒅𝝆𝒗

𝒅𝒕
𝒅𝑽

𝑽

) 

 

  

∮ �⃗�

𝑺

• 𝒅𝑺⃗⃗⃗⃗⃗⃗ = ∫ 𝛁 • �⃗�𝒅𝑽

𝑽

 Divergence Theorem 

 

    

∮ �⃗�

𝑺

• 𝒅𝑺⃗⃗⃗⃗⃗⃗ = ∫ 𝛁 • �⃗�𝒅𝑽

𝑽

= (∫ −
𝒅𝝆𝒗

𝒅𝒕
𝒅𝑽

𝑽

) 
∀ 𝑽 

 

    

𝛁 • �⃗� = −
𝒅𝝆𝒗

𝒅𝒕
=> 

 

 
𝛁 • �⃗� +

𝒅𝝆𝒗

𝒅𝒕
= 𝟎 

Continuity Equation 

Conservation of charge 

 

    

For steady state,  

 𝒅

𝒅𝒕
→ 𝟎 

 

    

For steady currents  

 𝒅𝝆𝒗

𝒅𝒕
= 𝟎 

 

    

Thus,    

 𝛁 • �⃗� = 𝟎  



   
This means there is no steady current source/sink, and the field lines of  J always close upon 

themselves. The total current flowing out of a circuit junction enclosed by surface S 

becomes: 

    

By Divergence Theorem   

 

∮ �⃗�

𝑺

• 𝒅𝑺⃗⃗⃗⃗⃗⃗ = ∫ 𝛁 • �⃗�𝒅𝑽

𝑽

= ∫ 𝟎𝒅𝑽 = 𝟎

𝑽

 

 

   

 

𝟎 = ∮ �⃗�

𝑺

• 𝒅𝑺⃗⃗⃗⃗⃗⃗ = ∑ 𝑰𝒌

𝒌

 

  

    

 

∑ 𝑰𝒌

𝒌

= 𝟎 Kirchhoff’s Current Law 

 

    
The Kirchhoff’s Current Law is the macroscopic form of  

𝛁 • �⃗� +
𝒅𝝆𝒗

𝒅𝒕
= 𝟎 in steady state. 

Example: 

Show the dynamics (time dependence) of free charge density ρ inside a homogeneous 

conductor with constant electric conductivity σ and permittivity ε 

Solution: 

 𝛁 • �⃗� = 𝛁 • 𝝈�⃗⃗⃗�  

   

Assuming simple medium 𝛁 • �⃗� = 𝝈𝛁 • �⃗⃗⃗�  

   

 
𝛁 • �⃗� = 𝝈𝛁 • �⃗⃗⃗� = −

𝒅𝝆
𝒗

𝒅𝒕
 

 

   

 
𝛁 • �⃗⃗⃗� = −

𝟏

𝝈

𝒅𝝆
𝒗

𝒅𝒕
 

 



   

 𝛁 • �⃗⃗⃗� = 𝝆
𝒗
  

   

 𝛁 • 𝜺�⃗⃗⃗� = 𝝆
𝒗
 𝜺𝟎 

   
Assuming simple medium 𝛁 • 𝜺�⃗⃗⃗� = 𝜺𝛁 • �⃗⃗⃗� = 𝝆

𝒗
  

   
 

𝛁 • �⃗⃗⃗� =
𝝆

𝒗

𝜺
  

   
 𝝆𝒗

𝜺
= −

𝟏

𝝈

𝒅𝝆𝒗

𝒅𝒕
 

 

   
 𝒅𝝆𝒗

𝒅𝒕
+

𝝆𝒗

𝜺
𝝈

= 𝟎 
 

   
 

𝝉 =
𝜺

𝝈
 (sec)  

   
 𝒅𝝆𝒗

𝒅𝒕
+

𝝆𝒗

𝝉
= 𝟎 

 

   
 

𝝆𝒗 = 𝝆𝒗𝟎𝒆−
𝒕
𝝉 

 

 

Time constant 𝝉 represents the time interval that is needed for 𝝆𝒗 to drop from 𝝆𝒗𝟎 to 

𝝆𝒗𝟎

𝒆
 for every point in  volume V. For a good conductor like copper, 𝝉 = 𝟏𝟎−𝟏𝟗 𝒔𝒆𝒄. 

 

 

 

 

 


