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MAGNETIC SCALAR AND VECTOR POTENTIALS 

 

We recall that some electrostatic field problems were simplified by relating the electric 

Potential V to the electric field intensity E (E = -V).  Similarly, we can define a 

potential associated with magnetostatic field B. In fact, the magnetic potential could be 

scalar Vm vector A. To define Vm and A involves two important identities: 

 

 x (V) = 0        (1.26) 

 

 . ( x A) = 0       (1.27) 

 

which must always hold for any scalar field V and vector field A. 

 

Just as E = -V, we define the magnetic scalar potential Vm (in amperes) as related to H 

according to 

 

H = -  Vm  if J = 0      (1.28) 

 

The condition attached to this equation is important and will be explained.  Combining 

eq. (1.28) and eq. (1.19) gives 

 

  J =  x H = - x (- Vm) = 0      (1.29) 

 

since Vm, must satisfy the condition in eq. (1.26). Thus the magnetic scalar potential Vm 

is only defined in a region where J = 0 as in eq. (1.28). We should also note that Vm 

satisfies Laplace's equation just as V does for electrostatic fields; hence, 

  
2
 Vm = 0,   (J = 0)      (1.30) 
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SCALAR MAGNETIC POTENTIAL 

 

Like scalar electrostatic potential, it is possible to have scalar magnetic potential. It is 

defined in such a way that its negative gradient gives the magnetic field, that is,  

 

H =  Vm        (3.16) 

 

Vm = scalar magnetic potential (Amp) 

 

Taking curl on both sides, we get 

 

 x H = - x Vm       (3.17) 

 

But curl of the gradient of any scalar is always zero. 

 

So,   x H =0        (3.18) 

But, by Ampere's circuit law   X H = J 

 

or,  J = 0 

 

In other words, scalar magnetic potential exists in a region where J = 0. 

 

H = -Vm    (J=0)       (3.19) 
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The scalar potential satisfies Laplace's equation, that is, we have 

 

.B = 0 .H = 0 = m (-Vm) = 0 

 

or,                            


2
 Vm = 0 (J = 0)       (3.20) 

 

Characteristics of Scalar Magnetic Potential (Vm) 

 

1. The negative gradient of Vm gives H, or H = -Vm                                                         

2. It exists where J = 0 

3. It satisfies Laplac’s equation. 

4. It is directly defined as 

 

B

A

m dLHV  

5. It has the unit of Ampere. 

 

VECTOR MAGNETIC POTENTIAL 

 

Vector magnetic potential exists in regions where J is present.  It is defined in such a 

way that its curl gives the magnetic flux density, that is, 

 

B   x A        (3.21) 
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where A = vector magnetic potential (wb/m). 

 

It is also defined as 

 








 
  m

AmpHenry

R

IdL
A





4

0      

 (3.22) 

 

or,  ,
4

0


s

R

Kds
A




   (K = current sheet)   (3.23) 

   

or,  ,
4

0


v

R

Jdv
A




        (3.24) 

 

 

Characteristics of Vector Magnetic Potential 

 

1. It exists even when J is present. 

2. It is defined in two ways  

B   x A        and 

 
v

R

Jd





4

0   

3. 
2
A = 0 j 

4. 
2
A = 0 if J = 0 
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5. Vector magnetic potential, A has applications to obtain radiation characteristics 

of antennas, apertures and also to obtain radiation leakage from transmission 

lines, waveguides and microwave ovens. 

6. A is used to find near and far-fields of antennas. 

 

Problem 4: 

  

The vector magnetic potential, A due to a direct current in a conductor in free space is 

given by A = (X
2
 + Y

2
) az wb /m

2
.  Determine the magnetic field produced by the 

current element at (1, 2, 3).                                                  

 

Solution: 

A = (x
2
 +y

2
) az wb/m

2
 

We have B =  x A 
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  61065  yx aa  

 

  6

0

1065
1  yx aaH


 

  6

7
1065

104

1 





 yx aa


 

 

  H = (3.978ax – 4.774ay), A/m 

 

 

BIOT SAVART's LAW                

 

Biot-Savart's law states that the magnetic field intensity dH produced at a point P, as 

shown in the figure, by the differential current element I dl is proportional to the product  

 

 

 

 

Magnetic field dH at P due to current element I dl. 

 



 15 

I dl and the sine of the angle 𝜷 between the element and the line joining P to the element 

and is inversely proportional to the square of the distance R between P and the element. 

That is, 

  
𝑑𝐻 ∝  

𝐼. 𝑑𝑙. 𝑠𝑖𝑛𝛽

𝑅2
 

 

  
𝒅𝑯 ∝ 

𝑰. 𝒅𝒍. 𝒔𝒊𝒏𝜷

𝑹𝟐
 

 

or 

 

 
𝑑𝐻 = 𝑘 

𝐼. 𝑑𝑙. 𝑠𝑖𝑛𝛽

𝑅2
 

* 

 

where, k is the constant of proportionality.  In SI units, k = 1/4. So, eq. (*) becomes 

  
𝒅𝑯 =

𝟏

𝟒𝝅

𝑰. 𝒅𝒍. 𝒔𝒊𝒏𝜷

𝑹𝟐
 

 

 

From the definition of cross product equation 𝑨⃗⃗  x 𝑩⃗⃗  ⃗ = A.B.sin. 𝒏̂,  

  
𝒅𝑯⃗⃗⃗⃗⃗⃗ =

𝑰. 𝒅𝒍⃗⃗⃗⃗ × 𝑹̂

𝟒𝝅𝑹𝟐
 

 

     

where   

  

𝑹 =
𝑹⃗⃗ 

|𝑹|
 

 

 

Thus, the direction of 𝒅𝑯⃗⃗⃗⃗⃗⃗  can be determined by the right-hand rule with the right-hand 

thumb pointing in the direction of the current, the right-hand fingers encircling the wire 

in the direction of 𝒅𝑯⃗⃗⃗⃗⃗⃗ . Alternatively, one can use the right-handed screw rule to 

determine the direction of 𝒅𝑯⃗⃗⃗⃗⃗⃗ , with the screw placed along the wire and pointed in the 

direction of current flow, the direction of advance of the screw is the direction of 𝒅𝑯⃗⃗⃗⃗⃗⃗  
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It is customary to represent the direction of the magnetic field intensity 𝑯⃗⃗⃗  (or current I) 

by a small circle with a dot or cross sign depending on whether 𝑯⃗⃗⃗  (or I) is out of, or into, 

the page. 

 

As like different charge configurations, one can have different current distributions: line 

current, surface current and volume current : 

 

 

 

If we define 𝑲⃗⃗⃗  as the surface current density (in amperes/meter) and 𝑱 ⃗⃗  as the volume 

current density (in amperes/meter square), the source elements are related as 

 𝑰𝒅𝒍⃗⃗⃗⃗  
Line Current Density  
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𝒅𝑰⃗⃗⃗⃗ = 𝑱 𝑺𝒅𝑺 
Surface Current Density  

 𝑱 𝒗𝒅𝑽 
Volume Current Density  

 

Thus, in terms of the distributed current sources, Biot-Savart law becomes: 

 

 



L

R

R

aIdl
H

24
 (Line current)     (1.6) 

   

 



S

R

R

aKdS
H

24
 (Surface current)     (1.7) 

 





V

R

R

aJdv
H

24
   (Volume current)     (1.8) 

  

As an example, let us apply eq. (1.6) to determine the field due to a straight current 

carrying filamentary conductor of finite length AB as in Figure 1.5. We assume that the 

conductor is along the z-axis with its upper and lower ends respectively subtending 

angles 
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Figure 1.3: Conventional representation of H (or I) (a) out of the page and (b) into the 

page. 

 

 

 

2 and 1 at P, the point at which H is to be determined. Particular note should be taken 

of this assumption, as the formula to be derived will have to be applied accordingly. If we 

consider the contribution dH at P due to an element dl at (0, 0, z), 

 

 
34 R

RIdl
dH




         (1.9)  

 

But dl = dz az and R = a - zaz , so 

 

dl x R =  dz a        (1.10) 

 

Hence, 

 
a

z

dzI
H 




2
3

224 


   (1.11) 
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Figure 1.5: Field at point P due to a straight filamentary conductor. 

 

Letting z =  cot , dz = - cosec
2
  d, equation (1.11) becomes 

 


2

1
33

22

cos

cos

4











a

ec

decI
H  

 

   





 da

I


2

1

sin
4

 

 

Or 

  


a
I

H 12 coscos
4

       (1.12) 

 

The equation (1.12) is generally applicable for any straight filamentary conductor of 

finite length.  Note from eq. (1.12) that H is always along the unit vector a (i.e., along 

concentric circular paths) irrespective of the length of the wire or the point of interest P. 

As a special case, when the conductor is semi-infinite (with respect to P), so that point A 

is now at O(0, 0, 0) while B is at (0, 0, ); 1 = 90, 2 = 0, and eq. (1.12) becomes 
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

a

I
H

4
         (1.13) 

 

Another special case is when the conductor is infinite in length.  For this case, point A is 

at (0, 0, - ) while B is at (0, 0, ); 1 = 180, 2 = 0. So, eq. (1.12) reduces to 

 



a

I
H

2
         (1.14) 

 

To find unit vector a in equations (1.12) to (1.14) is not always easy.  A simple approach 

is to determine a from 

aaa           (1.15) 

 

where al is a unit vector along the line current and a is a unit vector along the 

perpendicular line from the line current to the field point.  

 

Illustration: The conducting triangular loop in Figure 1.6(a) carries a current of 10 A. 

Find H at (0, 0, 5) due to side 1 of the loop. 

 

Solution: 

 

This example illustrates how eq. (1.12) is applied to any straight, thin, current-carrying 

conductor.  The key point to be kept in mind in applying eq. (1.12) is figuring out 1, 2, 

 and a. To find H at (0, 0, 5) due to side 1 of the loop in Figure 1.6(a), consider Figure  

 



 21 

 

 

 

 

 

Figure 1.6: (a) conducting triangular loop (b) side 1 of the loop. 

1.6(b), where side 1 is treated as a straight conductor.  Notice that we join the Point of 

interest (0, 0, 5) to the beginning and end of the line current.  Observe that 1, 2 and  

are assigned in the same manner as in Figure 1.5 on which eq. (1.12) is based. 

 

 cos 1 = cos 90

 = 0, 

29

2
cos 2  ,  = 5 

 

To determine a is often the hardest part of applying eq. (1.12). According to eq. (1.15), 

al = ax and a = az, so  

a = ax x az = -ay   
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Hence, 

 

  )(0
29

2

)5(4

10
coscos

4

1
121 yaaH 
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= -59.1 ay mA/m 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


