Lecture § :

Liénard-Wiechert potentials : Let us find the potentials due to a point charge q moving on
a specified trajectory w(t). Hence we replace the position vector of the source I’ by w(t) in
the following expression for the retarded time :
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Due to the retardation effects a multiplicative factor of (1 —n-v/c ) is needed in the

volume integrations.

Thus we can write :
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Then one can write the scalar potantial due to a moving charge as
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Since the current at a retarded time is p( r',t P )v (l‘, ) one can obtain the retarded vector

potential due to a moving charge as follows :
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Homeworks :

Study and solve the following exercises and problems from the textbook by D.Griffiths’s
“Introduction to Electrodynamics”

Study Exercises 10.3
Solve Problem 10.13
Solve Problem10.14

Solve Problem10.15



Fields of a moving charge : In order obtain expressions for the electric and magnetic fields
due to a moving point charge one can make use of the retarded potantials already obtained
above and insert them in the usual relationsfor £ and B .
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The calculational steps are quite tedious because of the presence of the retarded time factor in
the expressions for the potantials.

One gets :
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B(r.7r) = -2 x E(r. 1).
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Here
u=cre—v
a=y

Study and solve the following exercises and problems from the textbook by D.Griffiths’s
“Introduction to Electrodynamics”

Homework:
Study Exercises 10.4

Solve Problem 10.24

Finally we can obtain the Lorentz force between a charge Q and q moving with velocities V
and v respectively.
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All the velocities and positions are evaluated at a retarded time. This expression is the
relativistic generalization of the Coulomb’s law ! See. P.439 of D.Griffiths textbook.



