
PROGRAMMING WITH MATLAB

DATA TYPES - 1
WEEK 2

NUMERIC DATA TYPES

MATLAB provides several options for storing numbers as bits (default : double)

Type Description Range

uint8 8 bit unsigned integer Integers from 0 to 255

int8 8 bit signed integer Integers from -128 to 127

uint16 16 bit unsigned integer Integers from 0 to 65535

int16 16 bit signed integer Integers from -32768 to 32767

uint32 32 bit unsigned integer Integers from 0 to 4294967295

int32 32 bit signed integer Integers from -2147483648 to 2147483647

single 32 bit floating point
-3.402823E38 to -1.401298E-45

1.401298E-45 to 3.402823E38

double 64 bit floating point
-1.79769313486232E308 to -4.94065645841247E-324

4.94065645841247E-324 to 1.79769313486232E308

STRINGS IN MATLAB

 MATLAB stores strings as an array of characters

>> name = 'Cemil‘

>> double(name)

ans =

67 101 109 105 108

 Each letter in the string is represented by a decimal number in the ASCII table

VECTORS

 The elements are separated by commas to create a row vector

 Use square brackets:

>> x = [1, 3, 5]

x =

1 3 5

 a column vector can be created with transpose notation (‘)

>> y = [1, 3, 5]'

y =

1

3

5

VECTORS

 a column vector can also be created by separating elements with semicolons

>> z = [7; 11; 13]

z =

7

11

13

 a new vector can be created by appending one vector to another

>> x = [1, 3, 5]

>> y = [7, 11, 13]

>> z = [x, y]

z =

1 3 5 7 11 13

VECTORS

 The column operator creates vectors consisting of equally spaced elements

Syntax: x = p : q : r or x = (p : q: r) Do not use sqare brackets!

>> x = 1 : 2: 9

x =

1 3 5 7 9

>> x = 1 : 2: 8

x =

1 3 5 7

 If p - r is an integer multiple of q, then the final value is r. Otherwise, the final value is less than r.

 Step size does not have to be an integer

>> y = 1 : 0.5: 4

y =

1.0000 1.5000 2.0000 2.5000 3.0000 3.5000 4.0000

 Default step size is 1.

>> z = 1:5

z =

1 2 3 4 5

VECTORS

 With the linspace command, evenly spaced row vectors can be created. However, instead of incrementing, the number of
elements is specified.

Syntax: x = linspace(p : r : n)

>> x = linspace(1,5,7)

x =

1.0000 1.6667 2.3333 3.0000 3.6667 4.3333 5.0000

If n is not specified, the spacing is 1.

 The logspace command creates an array of logarithmically spaced elements

Syntax: x = logspace(p : r : n)
>> x = logspace(-0.5,1,4)

x =

0.3162 1.0000 3.1623 10.0000

(4 points between 10p and 10q)

If n is not specified, the default number of points is 50.

 The length command gives the number of elements in the vector.

Syntax: length(x)
>> x = [17, 19, 23]

>> length(x)

ans =

3

MATRICES
 Spaces or commas separates elements in different columns. Semicolons separate elements in different rows.

>> X = [1, 3, 5; 7, 11, 13]

X =

1 3 5

7 11 13

 Matrices can also be generated from vectors.

>> y = [1, 3, 5]

>> z = [7, 11, 13]

>> A = [y z]

A =

1 3 5 7 11 13

or

>> A = [y;z]

A =

1 3 5

7 11 13

or

>> A = [[1, 3];[5, 7];[11, 13]]

A =

1 3

5 7

11 13

ARRAY INDEXING, ARRAY ADDRESSING

 The colon (:) operator

>> x = [11, 13, 17, 19, 23]

x(:), returns all the row or column elements of the x vector.

>> x(:)

ans =

11

13

17

19

23

x(a:b), returns the elements a through b of the vector x.

>> x(2:4)

ans =

13 17 19

ARRAY ADDRESSING

>> A = [1, 3, 5; 7, 11, 13; 17, 19, 23]

A =

1 3 5

7 11 13

17 19 23

A(:,2) returns all the elements in the second column of the matrix A.

>> A(:,2)

ans =

3

11

19

A(:,1:3), returns all the elements in the second through third columns of A.

>> A(:,2:3)

ans =

3 5

11 13

19 23

ARRAY ADDRESSING

Try the following expressions

>> A(2:3,1:2)

ans =

7 11

17 19

>> A(:,end)

ans =

5

13

23

>> c = A(:)

c =

1

7

17

3

11

19

5

13

23

SOME ARRAY FUNCTIONS

 find: Finds indices of nonzero elements of an array.

Syntax: I = find(X) returns the linear indices corresponding to the nonzero entries of the array X

>> X = [1, 0, 5, 0, 0, 7, 9]

>> I = find(X)

I =

1 3 6 7

[I,J] = find(X) returns the row and column indices instead of linear indices into X.

>> A = [1, 0, 5; 0, 11, 0; 17, 0, 23]

>> [I, J] = find(A)

I =

1

3

2

1

3

J =

1

1

2

3

3

SOME ARRAY FUNCTIONS

[I,J,V] = find(X) also returns a vector V containing the values that correspond to the row and column indices I and J.

 length: Computes either the number of elements of A if A is a vector or the largest value of m or n if A is an m × n matrix.

Syntax: I = length(A)

>> A = [1, 3, 5; 7, 11, 13]

>> length(A)

ans =

3

 max: Largest component. For vectors, max(X) is the largest element in X. For matrices, max(X) is a row vector containing
the maximum element from each column.

Syntax: [Y,I] = max(X) returns the indices of the maximum values in vector I.

>> max(A)

ans =

7 11 13

>> x = [11, 13, 17, 19, 23]

>> max(x)

ans =

23

SOME ARRAY FUNCTIONS

 size: Returns a row vector [m n] containing the sizes of the m x n array A.

Syntax: size(A)

>> A = [1, 3, 5; 7, 11, 13]

>> size(A)

ans =

2 3

 sort: Sorts each column of the array A in ascending order and returns an array the same size as A.

Syntax: sort(A)

>> sort(A)

ans =

1 3 5

7 11 13

 sum: Sorts each column of the array A in ascending order and returns an array the same size as A.

Syntax: sort(A)

>> sum(A)

ans =

8 14 18

MULTIDIMENSIONAL ARRAYS

>> A(:,:,1) = [1, 3, 5;7, 11, 13]

>> A(:,:,2) = [17, 19, 23;27, 29, 31]

>> A

A(:,:,1) =

1 3 5

7 11 13

A(:,:,2) =

17 19 23

27 29 31

