
PROGRAMMING WITH MATLAB
WEEK 5

CONTROL STRUCTURES

CONTROL STRUCTURES

 Algorithms are sequences of explicitly defined instructions to solve a particular problem.

 The instructions are ordered and can be numbered. An algorithm, however, should be able to change

the order of instructions by using a control structure.

 Sequential operations: Instructions executed in order.

 Conditional operations: Control structures select the appropriate ones from the instructions based on

whether a certain condition is met.

 Iterative operations: Control structures execute a group of instructions for a certain number of times or

as long as certain conditions are met

RELATIONAL OPERATORS

operator description

== Equal to

~= Not equal to

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

RELATIONAL OPERATORS

>> x = -3;

>> y = 5.2;

>> z = x<y

z =

logical

1

>> x = [-3, 3, 5];

>> y = [5.2, 2.5, 3];

>> z = x<y

z =

1×3 logical array

1 0 0

>> z = x(x>y) % (finds all the elements in x that are greater than the corresponding elements in y)

z =

3 5

LOGICAL OPERATORS

operator description

& AND (x&y)

| OR

~ NOT

all All true

any Any one true

&& AND (short-circuit AND), scalar

|| OR (short-cirduit OR), scalar

xor XOR

LOGICAL OPERATORS

operator description

isempty(X) Returns a 1 if X is an empty matrix and 0 otherwise

isinf(X) Returns an array of the same dimension as X, with

ones where X has ‘inf’ and zeros elsewhere

isnan(X) Returns an array of the same dimension as X with

ones where X has ‘NaN’ and zeros elsewhere

ischarX() Returns a 1 if X is a character array and 0 otherwise

isnumeric(X) Returns a 1 if X is a numeric array and 0

otherwise

isreal(X) Returns a 1 if X has no elements with imaginary

parts and 0 otherwise

ORDER OF PRECEDENCE FOR OPERATORS

 First: Parentheses (starting with the innermost pair)

 Second: Arithmetic operator and logical NOT (left to right)

 Third: Relational operators (left to right)

 Fourth: Logical AND

 Fifth: Logical OR

IF/ELSE/ELSEIF

 IF : Basic flow control in all programming languages

Syntax:

if logical expression/condition

statements

end

 ELSE

Syntax:

if logical expression

statement group 1

else

statement group 2

end

 ELSEIF

Syntax:

if logical expression 1

statement group 1

elseif logical expression 2

statement group 2

else

statement group 3

End

Parentheses are not needed, and command blocks are between reserved words (such as if, end)

IF/ELSE/ELSEIF

You can nest any number of if statements. Each if statement requires an end keyword.

Avoid adding a space after else within the elseif keyword (else if). The space creates a nested if statement that
requires its own end keyword.

x = 5;

min = 1;

max = 10;

if (x >= min) && (x <= max)

disp('Value within specified range.')

elseif (x > max)

disp('Value exceeds maximum value.')

else

disp('Value is below minimum value.')

end

LOOPS

 while loops: Similar to a more general for loop. No need to know the number of iterations

Syntax:

while conditional expression

statements

end

>> x = 1;

while x < 13

x = x + 3;

end

The command block is executed as long as the conditional expression is correct

LOOPS

The infinite loop must be avoided!

If you inadvertently create an infinite loop (that is, a loop that never ends on its own), stop execution of the

loop by pressing Ctrl+C.

To programmatically exit the loop, use a break statement. To skip the rest of the instructions in the loop and

begin the next iteration, use a continue statement.

When nesting a number of while statements, each while statement requires an end keyword

LOOPS

 The switch structure: The switch structure provides an alternative to using the if, elseif, and else

commands

Syntax:

switch switch_expression

case case_expression

statements

case case_expression

statements

...

otherwise

statements

end

LOOPS

x = input('Enter a number: ');

switch x

case -1

disp('negative one')

case 0

disp('zero')

case 1

disp('positive one')

otherwise

disp('other value')

end

