
PROGRAMMING WITH MATLAB
WEEK 7

CURVE FITTING

CURVE FITTING

 Linear, power and exponential functions to describe the data.

 In the linear function y = mx + b, m gives the slope of the line, and b gives the intersection point with the

vertical axis.

 This function gives a straight line when plotted on rectilinear axes.

 The power function y = bxm gives a straight line when plotted on log-log axes.

 The exponential function y = b10mx and its equivalent form y = bemx give a straight line when plotted on

a semilog plot.

CURVE FITTING

 Many functions can be fairly well defined by high-order polynomials.

 MATLAB specifies a polynomial with the vector of coefficients

 If the p vector defines a polynomial:

𝑎3𝑥
3 + 𝑎2𝑥

2+𝑎1𝑥
1 + 𝑎0

𝑝 1 = 𝑎3, 𝑝 2 = 𝑎2, 𝑝 3 = 𝑎1, 𝑝 4 = 𝑎0

𝑝 = 1 0 − 3 5 , represents 𝑥3 − 3𝑥 +5 polynomial

CURVE FITTING

 To find the roots of a polynomial:

Syntax: k = roots(p)

 It is possible to construct a polynomial from its roots.

Syntax : p = poly(k)

>> p=[1 0 3 5]

p =

1 0 3 5

>> k = roots(p)

k =

0.5771 + 1.9998i

0.5771 - 1.9998i

-1.1542 + 0.0000i

>> p = poly(k)

p =

1.0000 0.0000 3.0000 5.0000

CURVE FITTING

 MATLAB makes polynomial fitting to data very easy:

Syntax: p = polyfit(x,y, n)

>> x = [0 1 2 3 4 5];

>> y = [0 -1 1 3 7 11];

>> p = polyfit(x,y,2) % finds a polynomial of the second order that

%best fits to the points (0,0), (1,-1), (2,1), (3,3), (4, 7), (5, 11)

p =

0.5893 -0.6321 -0.3214

 To calculate the polynomial at many points:

>> y = polyval(p, [1 2 3])

y =

9.0000 19.0000 41.0000

CURVE FITTING

To calculate y = x2 + 3 for x = -3: 0.1: 3

>> x = -3: 0.1: 3;

>> y = x.^2+3;

Add random noise to these samples (use randn)

>> y = y+randn(size(y));

Find a second-degree polynomial that fits the noisy data

>> p = polyfit(x,y,2)

p =

1.0166 -0.1520 3.1457

>> plot(x,y,'-.');

>> hold on

>> plot(x,polyval(p,x,'c'))

CURVE FITTING

Be careful when using high degree polynomials

>> x = [0 1 2 3 4 5];

>> y = [45 40 30 50 0.3 0];

>> p = polyfit(x,y,5);

>> plot(x,y,'sr');

>> hold on

>> plot((0:0.1:5),polyval(p,(0:0.1:5),'c'))

>> xlabel('x');ylabel('y')

CURVE FITTING

Goodness-of-Fit:

𝑠 =

𝑖=1

𝑁

(𝑦 − ത𝑦)2

𝑅2 = 1 −
𝑢

𝑠

R-squared is a statistical measure of how close the data are to the fitted regression line. It is also known as

the coefficient of determination, or the coefficient of multiple determination for multiple regression.

In general, the higher the R-squared, the better the model fits your data.

CURVE FITTING

Fitting interface:

MATLAB supports curve fitting through

the Basic Fitting interface

ROOT FINDING

 Many real world problems require us to solve an equation such as f (x) = 0

 fzero : tries to find a point x where f(x) = 0

Syntax: x = fzero(fun,x0)

>> fun = @cos; % function

x0 = 1; % initial point

x = fzero(fun,x0)

x =

1.5708

ROOT FINDING

 fminbnd: minimize a function in a bounded interval.

Syntax: x = fminbnd(fun,x1,x2)

>> fun = @cos;

x1 = 0;

x2 = 2*pi;

x = fminbnd(fun,x1,x2)

x =

3.1416

ROOT FINDING

Syntax: x = fminsearch(fun,x0). starts at the point x0 and attempts to find a local minimum x of the function

described in fun

>> fun = @(x)5*(x(2) - x(1)^1.5)^2 + (x(1) + 1)^2;

x0 = [-0.5,1];

x = fminsearch(fun,x0)

x =

-0.6812 0.1000

OPTIMIZATION TOOLBOX

 If you are familiar with the optimization methods, you can use this toolbox.

 It is useful for larger scale and more structural optimization problems

linprog : Linear programming solver

Syntax: x = linprog(f,A,b) solves min f'*x such that A*x ≤ b.

quadprog : Quadratic programming.

Syntax: x = quadprog(H,f) returns a vector x that minimizes 1/2*x'*H*x + f'*x

OPTIMIZATION TOOLBOX

fminunc : Find minimum of unconstrained multivariable function.

Syntax: x = fminunc(fun,x0) starts at the point x0 and attempts to find a local minimum x of the function

described in fun.

fmincon: Find minimum of constrained nonlinear multivariable function.

Syntax: x = fmincon(fun,x0,A,b) starts at x0 and attempts to find a minimizer x of the function described in

fun subject to the linear inequalities A*x ≤ b.

