PROGRAMMING WITH MATLAB

NUMERICAL METHODS FOR DIFFERENTIAL EQUATIONS

INTEGRATION

- The integral of a function is interpreted as the area under the function curve. In this case, the integral of $f(t)$ is the area A under the curve of $f(t)$ from $t=0$ to $t=b$.

INTEGRATION

- To calculate the integral of a function, MATLAB has numerical integration functions.
quad: is a numerical method used to find the area under the graph of a function.
Syntax: q = quad(fun, a, b), uses recursive adaptive Simpson's rule to compute the integral of function fun from a to b . fun is a function handle. Limits a and b must be finite.
To compute the integral:

$$
\int_{0}^{3} \frac{x}{x^{2}+3} d x
$$

$\gg \mathrm{f}=$ @(x)x./(x.^2+x);
$\gg q=$ quad $(\mathrm{f}, 0,3)$
$q=$
1.3863

INTEGRATION

integral:
Syntax: $q=$ integral(fun,xmin,xmax), numerically integrates function fun from xmin to xmax using global adaptive quadrature.

To compute the integral:

$$
\int_{0}^{\infty} e^{-x} \cos x d x
$$

\gg fun $=@(x) \exp (-x) .{ }^{*} \cos (x)$;
>> q = integral(fun, 0, Inf)
$q=$
0.5000

INTEGRATION

trapz:
Syntax: $q=\operatorname{trapz}(y)$, returns the approximate integral of Y via the trapezoidal method with unit spacing. $q=\operatorname{trapz}(x, y)$ integrates y with spacing increment x
$\gg y=(1: 7) . \wedge 3 \% y$ contains function values $f(x)=x^{3}$ in the domain $[1,7]$
$y=$
$\begin{array}{lllllll}1 & 8 & 27 & 64 & 125 & 216 & 343\end{array}$
$\gg q=\operatorname{trapz}(\mathrm{y})$
$q=$
612
To compute the integral:

>> x $=0: \mathrm{pi} / 100: \mathrm{pi} / 2 ;$
$\gg y=\cos (x)$;
$\gg q=\operatorname{trapz}(x, y)$
$q=$

INTEGRATION

Double integral:
Syntax: $q=$ integral2(fun, x min, $x m a x, y m i n, y m a x)$, numerically integrates function fun(x, y).
To compute the integral of the function $f(x, y)$:

$$
f(x, y)=\frac{1}{\sqrt{x^{2}+y}}
$$

$$
\begin{aligned}
& \gg \text { fun }=@(x, y) 1 . /\left(\operatorname{sqrt}\left(x . .^{\wedge} 2+y\right)\right) ; \\
& \gg q=\text { integral2(fun, } 1,2,0,3) \\
& q= \\
& \quad 1.6035
\end{aligned}
$$

INTEGRATION

Triple integral:
Syntax: $q=$ integral3(fun,xmin,xmax,ymin,ymax,zmin,zmax), numerically integrates function fun (x, y, z).
To compute the integral of the function $f(x, y, z)$:

$$
f(x, y, z)=\frac{1}{x^{2}+y^{2}+z^{2}}
$$

\gg fun $=@(x, y, z) 1 . /\left(x .^{\wedge} 2+y . .^{\wedge} 2+z .^{\wedge} 2\right) ;$
>> q = integral3(fun, 0, 1,0,2,0,3)
$q=$
3.1482

DIFFERENTIATION

- The diff function of MATLAB gives approximate derivative calculations.

Syntax: $y=\operatorname{diff}(x)$, calculates differences between adjacent elements of x.
If x is a vector of length k, then $y=\operatorname{diff}(x)$ returns a vector of length $k-1$
$y=[x(2)-x(1), x(3)-x(2), \ldots, x(k)-x(k-1)]$

$\gg y=\operatorname{diff}(x)$
$y=$
$\begin{array}{lllllllll}2 & 2 & 2 & 4 & 6 & -4 & 6 & 4 & 0\end{array}$

DIFFERENTIATION

- Approximate derivatives with diff
$\gg d=0.0001 ; \%$ step size
$\gg x=0: d: 2^{*} \mathrm{pi} ;$
\gg fun $=\cos (\mathrm{x})$;
>> $y=\operatorname{diff(fun)/d;~\% ~first~derivative~}$
$\gg z=\operatorname{diff}(y) / d ; \quad \%$ second derivative
$\gg \operatorname{plot}\left(x(:, 1:\right.$ length(y) $), y$, ,r', $x, f u n, ' g ', x(:, 1$:length(z) $), z,{ }^{\prime}{ }^{\prime}$ ')

DIFFERENTIATION

- Numerical gradient.

Syntax: $\operatorname{dfdx}=$ gradient(f), returns the one-dimensional numerical gradient of vector f. The output dfdx corresponds to $\partial \mathrm{d} / \partial \mathrm{x}$, which are the differences in the x (horizontal) direction.
[dfdx, dfdy] = gradient(f,dx,dy), computes the gradient of the function $f(x, y)$, where $d f d x$ and dfdy represent the partial derivatives, and $d x$, dy represent the spacing.

DIFFERENTIATION

- First-Order Differential Equations.

The ode45 function of MATLAB can be used to solve the equation $d y / d t=f(t, y)$
Syntax: $[t, y]=$ ode45(odefun,tspan,y0), where tspan $=[t 0 \mathrm{tf}]$, integrates the system of differential equations $\mathrm{dy} / \mathrm{dt}=\mathrm{f}(\mathrm{t}, \mathrm{y})$ from t0 to tf with initial conditions y 0 . the inputs of the odefun must be t and y , and its output must be a column vector representing dy/dt. The number of rows in this column vector must equal the order of the equation.

DIFFERENTIATION

- An application of ode solver. RL circuit
the equation describing the response of this system from an initial state of zero current is as follows:

$$
\begin{gathered}
L \frac{d i}{d t}+R i=V \\
\frac{d i}{d t}+\frac{R}{L} i=\frac{V}{L}
\end{gathered}
$$

Analytical solution:

$$
i=\frac{V}{R}\left(1-e^{-\frac{R}{L} t}\right)
$$

DIFFERENTIATION

For $R=1, L=1$ ve $V=1$, we define the following function:
function [dydt] = RLCircuit(t , y)
dydt $=1-y ;$
end
Calculate the analytical solution:
>> yTrue $=1-\exp (-\mathrm{t})$;
Calculate with ode45 function:
>> [t, y] = ode45(@RLCircuit, [0, 5], 0);
plot two together:
>> plot(t,y,'*',t,yTrue), xlabel('Time (s)'), ylabel('Inductor Current')

DIFFERENTIATION

