FEEDBACK CONTROL SYSTEMS

LECTURE NOTES-7/12

<u>Stability</u>

A linear time invariant system is stable if natural response approaches to zero as time goes to infinity.

A linear time invariant system is unstable if the natural response grows without bound as time approaches infinity

A linear time invariant system is marginally stable if the natural response neither decays nor grows but remains constant or oscillates as time approaches to infinity

A system is stable if every bounded input yields a bounded output.

We call this statement the bounded input bounded output (BIBO) stability definition of stability

- a. A system is stable if every bounded input yields a bounded output
- b. A system is unstable if any bounded input yields an unbounded output.

Poles at lhp yields pure exponential decay then negative real part which means Stable systems have closed-loop transfer function with poles only in the left half-plane

Routh-Hurwitz Criterion:

Find the number of poles without the coordinates

 $\frac{N(s)}{a_4s^4 + a_3s^3 + a_2s^2 + a_1s + a_0}$

S ⁴	a ₄	a ₂	a ₀
s ³	a ₃	a ₁	0
s ²	$\frac{-\begin{vmatrix} a_{4} & a_{2} \\ a_{3} & a_{1} \end{vmatrix}}{a_{3}} = b_{1}$	$\frac{-\begin{vmatrix} a_{4} & a_{2} \\ a_{3} & 0 \end{vmatrix}}{a_{3}} = b_{2}$	$\frac{-\begin{vmatrix} a_{4} & 0 \\ a_{3} & 0 \end{vmatrix}}{a_{3}} = 0$
S ¹	$\frac{-\begin{vmatrix} a_{3} & a_{1} \\ b_{1} & b_{2} \end{vmatrix}}{b_{1}} = c_{1}$	$\frac{-\begin{vmatrix} a_{3} & 0 \\ b_{1} & 0 \end{vmatrix}}{b_{1}} = 0$	$\frac{-\begin{vmatrix} a_{3} & 0 \\ b_{1} & 0 \end{vmatrix}}{b_{1}} = 0$
s ⁰	$\frac{-\begin{vmatrix} b_1 & b_2 \\ c_1 & 0 \end{vmatrix}}{c_1} = d_1$	$\frac{-\begin{vmatrix} b_1 & 0 \\ c_1 & 0 \end{vmatrix}}{c_1} = d_1$	$\frac{-\begin{vmatrix} b_1 & 0 \\ c_1 & 0 \end{vmatrix}}{c_1} = d_1$

PROBLEM: Make the Routh table for the system

 $\frac{1000}{s^3 + 10s^2 + 31s + 1030}$

Third degree polynomial means 3 poles Two rows change sign means 2 in rhp and 1 in lhp

Number of roots in rhp = number of sigh change at first column

Routh-Hurwitz Special Cases:

<u>Case 1</u>: Zero only in the first column

$$T(s) = \frac{10}{s^5 + 2s^4 + 3s^3 + 6s^2 + 5s + 3s^4}$$

S ⁵	1	3	5
S ⁴	2	6	3
S ³	ε	7/2	0
S ²	(6ε-7)/ε	2	0
S ¹	(42ε-49-6ε²)/(12ε-14)	0	0
s ⁰	3	0	0

s ⁵	1	+	+
S ⁴	2	+	+
S ³	ε	+	-
S ²	(6ε-7)/ε	-	+
S ¹	(42ε-49-6ε²)/(12ε-14)	+	+
s ⁰	3	+	+

Example: Determine the stability of the closed loop transfer function

$$T(s) = \frac{10}{s^5 + 2s^4 + 3s^3 + 6s^2 + 5s + 3}$$
$$D(s) = s^5 + 2s^4 + 3s^3 + 6s^2 + 5s + 3$$

S ⁵	3	6	2
S ⁴	5	3	1
S ³	4.2	1.4	0
S ²	1.33	1	0
S ¹	-1.75	0	0
s ⁰	1	0	0

2 rhp 3 lhp Case 2: Entire Row is Zero

$$T(s) = \frac{10}{s^5 + 27 + 6s^3 + 42s^2 + 8s + 56}$$

S ⁵	1	6	8
S ⁴	1	6	8
S ³	1	3	0

$$P(s) = s^4 + 6s^2 + 8$$

 $\frac{dP(s)}{ds} = 4s^3 + 12s$

S ⁵	1	6	8
S ⁴	1	6	8
S ³	1	3	0
S ²	3	8	0
S ¹	1/3	0	0
s ⁰	8	0	0

Example: For the transfer function given below; obtain the number of poles at right half-plane, left- half plane and jw axis.

	$s^8 + s^7 + 12s^6 + 22s^5 + 39s^4 + 59s^3 + 48s^2 + 38s + 20$										
S ⁵	1	12	39	48	20	S ⁵	1	12	39	48	20
S ⁷	1	22	59	38	0	S ⁷	1	22	59	38	0
S ⁶	-1	-2	1	2	0	S ⁶	-1	-2	1	2	0
S ⁵	1	3	2	0	0	S ⁵	1	3	2	0	0
S ⁴	1	3	2	0	0	S ⁴	1	3	2	0	0
s ³	2	3	0	0	0	s ³	2	3	0	0	0
						s ²	3	4	0	0	0

 S^1

S⁰

1/3

4

0

0

 $T(s) = \frac{10}{s^8 + s^7 + 12s^6 + 22s^5 + 39s^4 + 59s^3 + 48s^2 + 38s + 20}$

s8 to s4, two sign change \rightarrow 2 rhp and 2lhp

$$P(s) = s^4 + 3s^2 + 2$$

0

0

0

0

0

0

No sign change from s4 to s0 \rightarrow No rhp Then 4 poles on jw-axis

$$\frac{dP(s)}{ds} = 4s^3 + 6s$$

Example: Find the number of poles

$$T(s) = \frac{100}{s^4 + 6s^3 + 11s^2 + 6s + 200}$$

1				
	s ⁴	1	11	200
	S ³	1	1	0
	S ²	1	20	0
	S ¹	-19	0	0
	S ⁰	20	0	0

Example: Find the number of poles

$$T(s) = \frac{10}{2s^5 + 3s^4 + 2s^3 + 3s^2 + 2s + 1}$$

s ⁵	2	2	2	s ⁵	1	3	3
S ⁴	3	3	1	S ⁴	2	2	2
S ³	ε	4/3	0	S ³	2	2	0
S ²	(3ε-4)/ε	1	0	S ²	ε	2	0
S ¹	(12ε-16-32ε²)/(9 ^ε -12)	0	0	S ¹	(2ε-4)/ε	0	0
S ⁰	1	0	0	S ⁰	2	0	0