## FEEDBACK CONTROL SYSTEMS

LECTURE NOTES-7/12

## $\underline{\text { Stability }}$

A linear time invariant system is stable if natural response approaches to zero as time goes to infinity.

A linear time invariant system is unstable if the natural response grows without bound as time approaches infinity

A linear time invariant system is marginally stable if the natural response neither decays nor grows but remains constant or oscillates as time approaches to infinity

A system is stable if every bounded input yields a bounded output.
We call this statement the bounded input bounded output (BIBO) stability definition of stability
a. A system is stable if every bounded input yields a bounded output
b. A system is unstable if any bounded input yields an unbounded output.

Poles at Ihp yields pure exponential decay then negative real part which means Stable systems have closed-loop transfer function with poles only in the left half-plane

## Routh-Hurwitz Criterion:

Find the number of poles without the coordinates

$$
\frac{N(s)}{a_{4} s^{4}+a_{3} s^{3}+a_{2} s^{2}+a_{1} s+a_{0}}
$$

| $\mathrm{s}^{4}$ | $\mathrm{a}_{4}$ | $\mathrm{a}_{2}$ | $\mathrm{a}_{0}$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{s}^{3}$ | $\mathrm{a}_{3}$ | $\mathrm{a}_{1}$ | 0 |
| $s^{2}$ | $\frac{-\left\|\begin{array}{ll} a_{4} & a_{2} \\ a_{3} & a_{1} \end{array}\right\|}{a_{3}}=b_{1}$ | $\frac{-\left\|\begin{array}{cc} a_{4} & a_{2} \\ a_{3} & 0 \end{array}\right\|}{a_{3}}=b_{2}$ | $\frac{-\left\|\begin{array}{ll} a_{4} & 0 \\ a_{3} & 0 \end{array}\right\|}{a_{3}}=0$ |
| $\mathrm{s}^{1}$ | $\frac{-\left\|\begin{array}{ll}a_{3} & a_{1} \\ b_{1} & b_{2}\end{array}\right\|}{b_{1}}=c_{1}$ | $\frac{-\left\|\begin{array}{ll} a_{3} & 0 \\ b_{1} & 0 \end{array}\right\|}{b_{1}}=0$ | $\frac{-\left\|\begin{array}{ll} a_{3} & 0 \\ b_{1} & 0 \end{array}\right\|}{b_{1}}=0$ |
| $s^{0}$ | $\frac{-\left\|\begin{array}{ll} b_{1} & b_{2} \\ c_{1} & 0 \end{array}\right\|}{c_{1}}=d_{1}$ | $\frac{-\left\|\begin{array}{ll} b_{1} & 0 \\ c_{1} & 0 \end{array}\right\|}{c_{1}}=d_{1}$ | $\frac{-\left\|\begin{array}{ll} b_{1} & 0 \\ c_{1} & 0 \end{array}\right\|}{c_{1}}=d_{1}$ |

PROBLEM: Make the Routh table for the system

$$
\frac{1000}{s^{3}+10 s^{2}+31 s+1030}
$$

| $\mathrm{s}^{3}$ | 1 | 31 | 0 |
| :---: | :---: | :---: | :---: |
| $\mathrm{s}^{2}$ | 1 | 103 | 0 |
| $\mathrm{s}^{1}$ | $\frac{-\left\|\begin{array}{cr}1 & 31 \\ 1 & 103\end{array}\right\|}{1}=-72$ | $\frac{-\left\|\begin{array}{ll} 1 & 0 \\ 0 & 0 \end{array}\right\|}{1}=0$ | $\frac{-\left\|\begin{array}{ll} 1 & 0 \\ 1 & 0 \end{array}\right\|}{1}=0$ |
| $s^{0}$ | $\frac{-\left\|\begin{array}{cc} 1 & 103 \\ -72 & 0 \end{array}\right\|}{-72}=103$ | $\frac{-\left\|\begin{array}{cc} 1 & 0 \\ -72 & 0 \end{array}\right\|}{-72}=0$ | $\frac{-\left\|\begin{array}{cc} 1 & 0 \\ -72 & 0 \end{array}\right\|}{-72}=0$ |

Third degree polynomial means 3 poles
Two rows change sign means 2 in rhp and 1 in Ihp
Number of roots in rhp = number of sigh change at first column

## Routh-Hurwitz Special Cases:

Case 1: Zero only in the first column

$$
T(s)=\frac{10}{s^{5}+2 s^{4}+3 s^{3}+6 s^{2}+5 s+3}
$$

| $s^{5}$ | 1 | 3 | 5 |
| :--- | :--- | :--- | :--- |
| $s^{4}$ | 2 | 6 | 3 |
| $s^{3}$ | $\varepsilon$ | $7 / 2$ | 0 |
| $s^{2}$ | $(6 \varepsilon-7) / \varepsilon$ | 2 | 0 |
| $s^{1}$ | $\left(42 \varepsilon-49-6 \varepsilon^{2}\right) /(12 \varepsilon-14)$ | 0 | 0 |
| $s^{0}$ | 3 | 0 | 0 |


| $\mathrm{s}^{5}$ | 1 | + | + |
| :--- | :--- | :--- | :--- |
| $\mathrm{s}^{4}$ | 2 | + | + |
| $\mathrm{s}^{3}$ | $\varepsilon$ | + | - |
| $\mathrm{s}^{2}$ | $(6 \varepsilon-7) / \varepsilon$ | - | + |
| $\mathrm{s}^{1}$ | $\left(42 \varepsilon-49-6 \varepsilon^{2}\right) /(12 \varepsilon-14)$ | + | + |
| $\mathrm{s}^{0}$ | 3 | + | + |

Example: Determine the stability of the closed loop transfer function

$$
\begin{array}{r}
T(s)=\frac{10}{\underbrace{\frac{10}{s^{5}+2 s^{4}+3 s^{3}+6 s^{2}+5 s+3}}} \underset{D(s)=s^{5}+2 s^{4}+3 s^{3}+6 s^{2}+5 s+3}{ }
\end{array}
$$

| $s^{5}$ | 3 | 6 | 2 |
| :--- | :--- | :--- | :--- |
| $s^{4}$ | 5 | 3 | 1 |
| $s^{3}$ | 4.2 | 1.4 | 0 |
| $s^{2}$ | 1.33 | 1 | 0 |
| $s^{1}$ | -1.75 | 0 | 0 |
| $s^{0}$ | 1 | 0 | 0 |

2 rhp 3 lhp

Case 2: Entire Row is Zero

$$
T(s)=\frac{10}{s^{5}+27+6 s^{3}+42 s^{2}+8 s+56}
$$

| $s^{5}$ | 1 | 6 | 8 |
| :--- | :--- | :--- | :--- |
| $s^{4}$ | 1 | 6 | 8 |
| $s^{3}$ | 1 | 3 | 0 |

$$
P(s)=s^{4}+6 s^{2}+8
$$

$$
\frac{d P(s)}{d s}=4 s^{3}+12 s
$$

| $s^{5}$ | 1 | 6 | 8 |
| :--- | :--- | :--- | :--- |
| $s^{4}$ | 1 | 6 | 8 |
| $s^{3}$ | 1 | 3 | 0 |
| $s^{2}$ | 3 | 8 | 0 |
| $s^{1}$ | $1 / 3$ | 0 | 0 |
| $s^{0}$ | 8 | 0 | 0 |

Example: For the transfer function given below; obtain the number of poles at right half-plane, left- half plane and jw axis.

$$
T(s)=\frac{10}{s^{8}+s^{7}+12 s^{6}+22 s^{5}+39 s^{4}+59 s^{3}+48 s^{2}+38 s+20}
$$

| $S^{5}$ | 1 | 12 | 39 | 48 | 20 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $S^{7}$ | 1 | 22 | 59 | 38 | 0 |
| $S^{6}$ | -1 | -2 | 1 | 2 | 0 |
| $S^{5}$ | 1 | 3 | 2 | 0 | 0 |
| $s^{4}$ | 1 | 3 | 2 | 0 | 0 |
| $s^{3}$ | 2 | 3 | 0 | 0 | 0 |


| $S^{5}$ | 1 | 12 | 39 | 48 | 20 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $S^{7}$ | 1 | 22 | 59 | 38 | 0 |
| $S^{6}$ | -1 | -2 | 1 | 2 | 0 |
| $S^{5}$ | 1 | 3 | 2 | 0 | 0 |
| $s^{4}$ | 1 | 3 | 2 | 0 | 0 |
| $s^{3}$ | 2 | 3 | 0 | 0 | 0 |
| $s^{2}$ | 3 | 4 | 0 | 0 | 0 |
| $s^{1}$ | $1 / 3$ | 0 | 0 | 0 | 0 |
| $s^{0}$ | 4 | 0 | 0 | 0 | 0 |

$$
P(s)=s^{4}+3 s^{2}+2
$$

No sign change from s4 to s0 $\rightarrow$ No rhp Then 4 poles on jw-axis

$$
\frac{d P(s)}{d s}=4 s^{3}+6 s
$$

Example: Find the number of poles

$$
T(s)=\frac{100}{s^{4}+6 s^{3}+11 s^{2}+6 s+200}
$$

| $s^{4}$ | 1 | 11 | 200 |
| :--- | :--- | :--- | :--- |
| $s^{3}$ | 1 | 1 | 0 |
| $s^{2}$ | 1 | 20 | 0 |
| $s^{1}$ | -19 | 0 | 0 |
| $s^{0}$ | 20 | 0 | 0 |

## Example: Find the number of poles

$$
T(s)=\frac{10}{2 s^{5}+3 s^{4}+2 s^{3}+3 s^{2}+2 s+1}
$$

| $\mathrm{s}^{5}$ | 2 | 2 | 2 |
| :--- | :--- | :--- | :--- |
| $\mathrm{~s}^{4}$ | 3 | 3 | 1 |
| $\mathrm{~s}^{3}$ | $\varepsilon$ | $4 / 3$ | 0 |
| $\mathrm{~s}^{2}$ | $\left(3^{\varepsilon}-4\right) / \varepsilon$ | 1 | 0 |
| $\mathrm{~s}^{1}$ | $\left(12 \varepsilon-16-32 \varepsilon^{2}\right) /\left(9^{\varepsilon}-12\right)$ | 0 | 0 |
| $\mathrm{~s}^{0}$ | 1 | 0 | 0 |


| $s^{5}$ | 1 | 3 | 3 |
| :--- | :--- | :--- | :--- |
| $s^{4}$ | 2 | 2 | 2 |
| $s^{3}$ | 2 | 2 | 0 |
| $s^{2}$ | $\varepsilon$ | 2 | 0 |
| $s^{1}$ | $(2 \varepsilon-4) / \varepsilon$ | 0 | 0 |
| $s^{0}$ | 2 | 0 | 0 |

