
FEEDBACK CONTROL SYSTEMS

LECTURE NOTES-10/12



Remember:

1) Number of branches = number of poles

2) Symmetrical about the real axis

3) Real-axis segments are to the left of an odd number of finite poles or zeros

4) Root locus begins with poles and ends at zeros

5) Asymptotes interceptions and angles

6) Real-axis break-in and breakaway points

7) Imaginary axis crossings
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Root Locus

Example: Sketch the root locus for the system and find the following:

a. The exact point and gain where the locus crosses the jw-axis

b. The breakaway point on the real axis

c. The range of K within which the system is stable

Use the Routh-Hurwitz

criterion such that a row of 

zeros will yield the gain

Zero=+

Pole=-

Remember:
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Matlab and Root Locus

s + 2

--------

s^2 + 10

>> sys = tf([1 2],[1 0 10])

>> rlocus(sys)

>> rlocfind(sys)

>> rlocus(sys)

>> Zeta = 0.7;

>> Wn = 1.8;

>> sgrid(Zeta,Wn)

Remember:



Solution: 1) replace the all system with another one (not possible or expensive)

2) Compansate with additional poles and zeros (open-loop)

Disavantage: Increase the system order.

Question: What should be the proper locations of the additional poles and/or zeros to 

yield the desired second order closed-loop poles? 

(Compansators not only used to improve transient response but also improve steady 

state error)

Improving Steady-State Error

Since the transient response and the static error constant were related to the gain. 

The higher the gain, the smaller the steady-state error, but the larger the percent 

overshoot.

On the other hand, reducing gain to reduce overshoot increased the steady-state 

error.



Compansator use pure integration for improving steady-state error

or pure differentiation for improving transient response
ideal

compensators

Ideal

Compensators

Implementation

Active:

Electric networks, active amplifiers

Additional source

Steady state error  zero

Passive:

Resistors and capacitors

Less expensize

Steady state not driven zero



What improvement can we expect in the steady-state error?

a) In order to keep the transient response unchanged, compensator pole and

zero must be close to each other

b) The ration of zc to pc can be large for improvement in steady state at the same

time pole and zero close to each other. For example pc=-0.001 and zc=-0.01
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Improving Transient Response via Cascade Compensation

Design a system with a given overshoot and settling time

1) Ideal derivative compensation: pure differentiator is added

Requires active network  proportional-plus-derivative (PD) controller

2)Passive network: adding zero and more distant pole –> lead compensator

Ideal Derivative Compensation (PD)

Begin with choosing an appropriate closed-loop location on s-plane

Root-locus must be re-shaped  poles and zeros are added

Speed-up original system by adding a single zero
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Improving Steady-State Error and Transient Response

Combining steady-state error and transient response techniques

(1) Improve steady state (2) improve transient response

Disadvantage: improvement transient response cause deterioration is steady-state error

(1) improve transient response (2) Improve steady state 

First active PD controller then active PI controller = PID Controller

a) Determine how much improvement need in transient response

b) Design Pıfor steady state error

c) Determine gains
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Lag compensator

Velocity constant Kv is )(lim
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The static error constant is inversely proportional to the steady state error which 

is equal to 3.201
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The static error constant is inversely proportional to steady state error which is 6.794

The additional lead compensator has improved the steady state by 4.713

We can arbitrary choose the lag compensator pole at 0.01 and zero at 0.04713
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