Experiment - 4 Airflow System –Bernoulli's Experiment

Aim of this Experiment

Bernoulli Experiment: The duct allows students to quantitatively investigate Bernoulli's equation relating total pressure and dynamic pressure in a stream. The unit also introduces students to the Pitot - static tube, an essential tool for aerodynamic investigation and velocity measurement.

Experimental Set – up

Experimental system has some essential items needed for the experimental use. It features a large capacity **airflow system**, a **plenum chamber**, **multi-tube monometer** and**Bernoulli investigation duct**.

The **Airflow System** has been specifically designed to allow students to investigate a wide range of and low speed air flow phenomena and fundamental aerodynamics. Airflow System base unit consists of a large capacity variable speed centrifugal fan with a separate aerodynamically designed plenum chamber containing multiple screens, flow straightener and acceleration section. The fan and plenum chamber are connected by a length of flexible hose and this allows the two components to be arranged in a variety of convenient locations either at bench or floor level.

A large number of optional ducts may be attached to the **plenum discharge** that allow investigation of airflow on the positive side of the fan.

In addition there are additional optional items that attach to the suction or intake side of the fan.

The ability to utilise both the intake and discharge sides of the fan, together with a continuously expanding range of optional accessories makes the **Airflow System** a very flexible and cost effective unit.

General experimental setup of Airflow System: 1. Fan; 2. Fan Speed Control; 3. RCCB & MCB Box; 4. Fan Outlet; 5. Fan Inlet; 6. RCCB; 7. MCB

General experimental setup of Plenum Chamber: 8. Plenum Chamber; 9. Plenum Discharge; 10. Plenum Inlet

Multi-tube Manometer has been designed for operation with the Airflow System. However as a 16 tube manometer it may equally be used in any application that is within its pressure range. Last apparatus for the experimental setup is Bernoulli investigation duct.

General experimental setup of Multi-Tube Manometer: 1. Manometer Tube Couplings; 2. Side Clamps; 3. Angle Indicator; 4. Rubber Feet; 5. Manometer Tubes; 6. Reservoir Tapping; 7. Reservoir; 8. Reservoir Clamp; 9. Reservoir Track; 10. Marker

General experimental setup of Multi-Tube Manometer: 1. Position Measuring Scale; 2. Profile Retaining Nuts; 3. Duct Profiles; 4. Mounting Nuts; 5. Pitot-Static Tube; 6. Locking Nut; 7. Static Pressure Tapping; 8. Total Pressure tapping

Theory

Duct demonstrates the use of a pitot-static tube and the application of Bernoulli's equation along a convergent-divergent passage.

The **pitot-static tube** head detail is shown figure 5. The **static pressure** tapping is 25mm behind the **total pressure** tapping. The total pressure tapping brings the flow immediately in front of it to a halt.

According to Bernoulli's equation the total pressure P is defined as

$$P = p + \frac{1}{2}\rho V^2 \tag{1}$$

Where ρ is the static pressure (N/m²) measured in a flow field moving at velocity v(m/s).

The total pressure P should be constant along the duct providing that the flow is steady and that the airis incompressible and inviscid. If the pressure in the plenum chamber is P_o then the pressure along the streamline shown above should be everywhere the same as P_o . This pressure can be measured using a tapping in the top wall of the box before the contraction as the velocity v inside the box is a fraction of that in the duct.

As the flow along the streamline X is brought to a halt at the total pressure tapping this tube willmeasure the total Pressure P at that point.

The static pressure p can be measured by the static pressure tappings in the wall of the pitotstatic tubeas the air is moving at velocity v (m/s) at this point. In order to not be affected by the presence of thetip of the tube (disturbing the streamlines) the static pressure holes are located at a positionapproximately 5 diameters downstream of the tip (25mm).

If the flow is assumed to be one dimensional (assuming that the velocity over any chosen crosssection to be uniform across that section) then the continuity equation may be written as

$$\dot{Q} = A_t V_t = A V \tag{2}$$

Where; \dot{Q} is the volume flow (m³/s); A_t is the area at the throat (m²); V_t is the velocity at the throat (m/s); A is the area at any point in the duct (m²); V is the velocity at any point in the duct (m/s)

Re-arranging (2), the velocity distribution along the duct may be written as the ratio

$$\frac{V}{V_t} = \frac{A_t}{A}$$

The depth of the duct is constant (along the duct) and hence the area will be proportional to the duct height H. Hence

$$\frac{V}{V_t} = \frac{H_t}{H} \tag{3}$$

Therefore from the continuity equation, the theoretical velocity ratio (relative to the velocity at the contraction) at any point can be calculated purely from the height ratio.

From Bernoulli's equation the velocity at any point can be determined from the following:

$$P = p + \frac{1}{2}\rho V^{2}$$

$$2(P-p) = \rho V^{2}$$
(3)
$$\sqrt{\frac{2(P-p)}{\rho}} = V$$

The velocity at the throat V_t is;

$$\sqrt{\frac{2(P_t - p_t)}{\rho}} = V_t$$

The actual velocity ratio in the duct may be determined from the following:

$$\frac{\sqrt{\frac{2(P-p)}{\rho}}}{\sqrt{\frac{2(P-p)}{\rho}}} = \frac{V}{V_t}$$
$$\frac{\sqrt{\frac{2(P-p)}{\rho}}}{\sqrt{\frac{(P-p)}{(P_t-p_t)}}} = \frac{V}{V_t}$$

Note that as the total pressure P will be the same (Pt = P) at all points along the duct the equation may be written as

$$\sqrt{\frac{(P-p)}{(P-p_t)}} = \frac{V}{V_t} \tag{4}$$

Hence it is possible to measure the total and static pressure along the duct and compare the resulting velocity ratio with the velocity ratio calculated from the duct dimensions.

Velocity Measurement

Due to the Bernoulli relationship $[P = p + (1/2)\rho V^2]$ the pitot-static tube is frequently used for the purpose of air velocity measurement. In fact the pitot-static tube or a pitot tube and separatestatic tapping is used on aircraft for the purpose of airspeed measurement.

Below is an example of a pitot tube on a light aircraft.

By measuring the difference between the total pressure P and static pressure p the air speed may be determined from

$$P = p + \frac{1}{2}\rho V^{2}$$
$$2(P-p) = \rho V^{2}$$
$$\sqrt{\frac{2(P-p)}{\rho}} = V$$

Experiment -4.1

Investigation of Bernoulli's Equation

Aim of This Experiment

This experiments aim the use bernoulli's Equation on air flow system.

Procedure

Connection to the Airflow System

Care must be exercised when connecting the manometer to the airflow system and its optional accessories. The following method is suggested to prevent the manometer liquid from being either driven out of the manometer tubes or drawn into the tubes connected to the accessories.

Before starting the fan, connect the pressure hoses to the accessory in use and to the manometer. Note that the two outer tubes (left and right) are not normally connected/used.

Set the manometer to the vertical or inclined condition as required and adjust the reservoir to about mid-height. Record the atmospheric datum or zero level. Then start the fan and slowly increase the speed, at the same time monitoring the manometer levels. As the pressures in the various tubes move up and/or down adjust the reservoir level also up or down, so that the liquid levels are kept within the range of the manometer.

Once the fan is running at the desired speed make any final adjustments to the reservoir level to set the atmospheric datum to a convenient value using the two outer tubes as a reference. Record this atmospheric datum as the reference value. It is this value that will be either taken from, or added to the other levels recorded on the manometer tubes.

Once the fan is at the desired operating speed loosen the locking nut and carefully slide the pitot-static tube along the length of the duct while monitoring the manometer tubes that are connected.

Ensure that the static pressure stays within the limits of the manometer.

Then set the manometer so that the static pressure tapping is located at the intake position (approximately x = 315mm from the duct exit) and record the following:-

Po, Plenum Chamber Pressure P, Total Pressure p Static Pressure

Refer to the useful data on appendix and retract the pitot-static tube a convenient distance, for which towards the discharge (say 10 or 15mm), record the location X and repeat the three pressure measurements Po, P, and p.

Continue retracting the pitot-static tube at regular intervals (data on appendix) record the location X and the three pressures until the tube is at the exit plane of the duct.

Typical sample data is shown overleaf.

Typical Data

The table below shows data as recorded from the manometer. The readings are all measured in mm height on the manometer scales. The table on the following page shows the data processed using the method shown below.

Distance from	Liners	Total	Static	Plenum	Atmospheric
EXIT	Configuration	Pressure	Pressure	Pressure P.	Datum
X	H	mm	mm	mm	mm
mm	$\frac{11}{11}$				
245	Ht .	4.50	240	420	252
315	0.440	168	240	138	252
300	0.573	168	250	138	252
290	0.620	168	260	138	252
280	0.676	168	280	138	252
270	0.743	168	332	138	252
260	0.824	168	362	138	252
250	0.926	168	378	138	252
240	1.000	168	383	138	252
230	1.000	168	385	138	252
220	1.000	168	384	138	252
210	1.000	168	372	138	252
200	1.000	168	368	138	252
190	0.965	168	356	138	252
180	0.919	168	344	138	252
170	0.880	168	332	138	252
160	0.846	168	323	138	252
150	0.815	168	313	138	252
140	0.786	168	305	138	252
130	0.759	168	298	138	252
120	0.734	168	292	138	252
110	0.710	168	286	138	252
100	0.688	168	281	138	252
90	0.667	168	276	138	252
80	0.648	168	272	138	252
70	0.633	168	268	138	252
60	0.612	168	265	138	252
50	0.595	168	262	138	252
40	0.580	168	258	138	252
30	0.565	168	256	138	252
20	0.550	168	254	138	252
10	0.440	168	252	138	252
0	0.440	168	249	138	252

Distance from Exit	Total Pressure	Static Pressure	Plenum Pressure	Liners Normal	$\left(\frac{(P-p)}{(p-p)}\right)$
Plane	Р	р	P _o	Configuration	$V(P-p_t)$
х	N/m ²	N/m ²	N/m ²	Ht	V
mm				\overline{H}	$\overline{V_t}$
315	659.2	94.2	884	0.440	0.579
300	659.2	15.7	884	0.573	0.618
290	659.2	-62.8	884	0.620	0.654
280	659.2	-219.7	884	0.676	0.722
270	659.2	-627.8	884	0.743	0.873
260	659.2	-863.3	884	0.824	0.950
250	659.2	-988.8	884	0.926	0.988
240	659.2	-1028.1	884	1.000	1.000
230	659.2	-1043.8	884	1.000	1.005
220	659.2	-1035.9	884	1.000	1.002
210	659.2	-941.8	884	1.000	0.974
200	659.2	-910.4	884	1.000	0.964
190	659.2	-816.2	884	0.965	0.935
180	659.2	-722.0	884	0.919	0.905
170	659.2	-627.8	884	0.880	0.873
160	659.2	-557.2	884	0.846	0.849
150	659.2	-478.7	884	0.815	0.821
140	659.2	-415.9	884	0.786	0.798
130	659.2	-361.0	884	0.759	0.778
120	659.2	-313.9	884	0.734	0.759
110	659.2	-266.8	884	0.710	0.741
100	659.2	-227.6	884	0.688	0.725
90	659.2	-188.4	884	0.667	0.709
80	659.2	-157.0	884	0.648	0.696
70	659.2	-125.6	884	0.633	0.682
60	659.2	-102.0	884	0.612	0.672
50	659.2	-78.5	884	0.595	0.661
40	659.2	-47.1	884	0.580	0.647
30	659.2	-31.4	884	0.565	0.640
20	659.2	-15.7	884	0.550	0.632
10	659.2	0.0	884	0.440	0.625
0	659.2	23.5	884	0.440	0.614

The driving pressure for the flow through the duct is the Plenum Pressure Po. This should be close to or greater than the Total Pressure P. There can be differences between the Plenum Pressure Po and the Total Pressure P due to frictional and pressure losses in the transition between the plenum chamber and the duct. The degree of difference between Po and P may vary between F100B units and at different plenum driving pressures. The important factor in the data is the continuity of the Total pressure P along the duct and the relationship between static pressure p and the velocity pressure

This in turn confirms the Bernoulli relationship

$$P = p + \frac{1}{2}\rho V^2$$

Sample Calculation

The following show the method used to calculate the data in typical data table.

All of the readings were taken in terms of height up the manometer tube using the reference scales.

Referring to the reading at X = 260mm

Atmospheric datum = 252 mm, this is the reference value. Some pressures are higher than this (i.e the value will be lower than this) and others lower (i.e the value will be higher than this).

Due to the arrangement of the manometer scale (0mm at the bottom) the pressures can be determined relative to atmospheric pressure by subtracting the values from the DATUM value. Hence pressures below atmospheric pressure will be negative.

The pressures can be determined using the density of the manometer fluid and the fluid height/depth above or below the datum.

Hence

Distance from	Liners	Total	Static	Plenum	Atmospheric
Exit	Normal	Pressure	Pressure	Pressure	Datum
Plane	Configuration	Р	р	Po	
Х	H_t	mm	mm	mm	mm
mm	\overline{H}				
260	0.824	168	362	138	252

Experiment -4.2

The Use of the Pitot-Static Tube for Air Velocity Measurement

This experiment aims to calculate velocity measurements by using pitot tube and Bernoulli's equation.

Procedure

The procedure for this experiment is identical to that used for experiment No 1.

The test results obtained from the procedure for experiment No 1 may also be used for this experiment.

The pitot-static tube may be used to determine the air velocity using the difference between Total Pressure P and static pressure p.

$$\begin{split} P &= p + \frac{1}{2}\rho V^2 \\ 2\left(P - p\right) &= \rho V^2 \\ \sqrt{\frac{2\left(P - p\right)}{\rho}} &= V \end{split}$$

Utilising the data on page 10 the following results may be calculated. For the test procedure the ambient air temperature was 21° C and the atmospheric pressure was $1.01325 \times 10^5 \text{ N/m}^2$.

As may be seen the velocity varies from approximately 30m/s at inlet to 53m/s at the throat and approximately 32m/s at exit.

Sample Calculation

Referring to the reading at X = 260mm

Atmospheric datum = 252mm, this is the reference value. Some pressures are higher than this (i.e. the value will be lower than this) and others lower (i.e. the value will be higher than this).

Due to the arrangement of the manometer scale (0mm at the bottom) the pressures can be determined relative to atmospheric pressure by subtracting the values from the DATUM value. Hence pressures below atmospheric pressure will be negative. The pressures can be determined using the density of the manometer fluid and the fluid height/depth above or below the datum.

Distance from Exit Plane		Liners Normal		Total Pressure P		Static Pressure	Atmospheric Datum
X		LT4		m	n	P mm	mm
mm		<u> </u>		m			
		H					
260		0.824	16		8	362	252
	Dist from Plan X	tance n Exit ne	Total Pressure P N/m ²	e	Static Pressure p N/m ²	Air Velocity m/s	
	mm						
	315		659.2		94.2	30.7	
	300		659.2		15.7	32.7	
	290)	659.2		-62.8	34.7	
	280)	659.2		-219.7	38.3	_
	270)	659.2		-627.8	46.3	
	260		659.2		-863.3	50.4	_
	250		659.2		-988.8	52.4	
	240)	659.2		-1028.1	53.0	
	230		659.2		-1043.8	53.3	
	220		659.2		-1035.9	53.1	
	210)	659.2		-941.8	51.6	_
	200		659.2		-910.4	51.1	_
	190)	659.2		-816.2	49.6	_
	180		659.2		-722.0	48.0	_
	170		659.2		-627.8	46.3	_
	160		659.2		-557.2	45.0	_
	150		659.2		-478.7	43.5	_
	140		659.2		-415.9	42.3	_
	130		659.2		-361.0	41.2	_
	120		659.2		-313.9	40.3	
	110		659.2		-200.8	39.3	
	100		650.2		-227.0	38.4	
	90		650.2		-188.4	37.0	
	80		650.2		-157.0	26.2	
	60		650.2		-123.0	35.6	
	50		650.2		-78 5	35.0	
	40		650.2		-47.1	34.3	
	30		659.2		-31.4	33.9	
30			659.2		-15.7	33.5	
	10		659.2		0.0	33.1	-
	0		659.2		23.5	32.5	1

Appendix – I Some Useful Data

Duct Height to Throat Ratio

	Liners Normal	Liners Reversed
	Configuration	Configuration
x Distance from	H_t	H_t
Exit Plane mm	\overline{H}	\overline{H}
315	0.440	0.440
300	0.573	0.551
290	0.620	0.571
280	0.676	0.586
270	0.743	0.602
260	0.824	0.619
250	0.926	0.636
240	1.000	0.655
230	1.000	0.675
220	1.000	0.697
210	1.000	0.720
200	1.000	0.744
190	0.965	0.770
180	0.919	0.798
170	0.880	0.828
160	0.846	0.860
150	0.815	0.894
140	0.786	0.932
130	0.759	0.973
120	0.734	1.000
110	0.710	1.000
100	0.688	1.000
90	0.667	1.000
80	0.648	1.000
70	0.633	0.882
60	0.612	0.790
50	0.595	0.715
40	0.580	0.652
30	0.565	0.600
20	0.550	0.556
10	0.440	0.440
0	0.440	0.440

Appendix –II Symbolas and Units

UNITS			
	Symbol	Designation	Unit
	g	Acceleration due to gravity	m/s ²
	h	Manometer liquid height	mm
	р	Gauge pressure	kN/m^2
	Р	Absolute pressure	kN/m ²
	ρ	Density of manometer fluid	Kg/m ³