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 The first law of thermodynamics 

  It is stated as the rate of change of total energy in a system is equal to the sum of the rate of heat 

transfer to the system and the rate of work done on the system. It can be expressed as follows: 
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where sQ is the rate of heat transfer, sW is the work done on the system, and sE is the total energy 

of the system at a given state. 

 

 Signs:  

i) the rate of heat transfer is positive when the heat is added to the system from the surroundings, 

negative when the heat is transferred to the surroundings from the system 

ii) the rate of work is positive when work is done on the system and it is negative when work is 

done on the surroundings by the system. 

 

 Energy form:  

iii) the total energy of the system is composed of the mechanical and thermal energies. 

iv) the total mechanical energy is also composed of kinetic  sKE , potential  sPE and internal sU

energy of the system. Hence 
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The total energy of the system can be also expressed as follows. 
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where e is referred to as the total energy per unit mass. 

Eqn. 4.13 then becomes: 
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Assuming that total energy per unit mass, e is intensive property, and the total energy of the 

system is extensive property, E, then Reynolds’ transport theorem can be written for sEN  , and 

eη  as: 
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The total energy per unit mass cam also be expressed as. 
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where V is the velocity, z is the elevation, g is the acceleration term and u is the internal energy per 

unit mass. The first law of thermodynamics then can be written as: 
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Alternatively eqn. 4.19 can be written for the control volume as: 
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For a steady flow, eqn 4.20 can be simplified as: 
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For a steady, one-dimensional flow through a streamtube, the last equation can be also written as 

follows: 
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 The second law of thermodynamics 

 For a fluid system, the second law of thermodynamics can be stated as follows 
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where sS represents the entropy of the system and can be given as: 
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In eq. 4.24, s is the entropy per unit mass. Therefore, Eqn. 4.23 becomes 
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In the above equation, inequality implies that the flow process is irreversible, while equality implies 

that it is reversible process.  

 

The entropy of the system is extensive property while the entropy per mass is an intensive 

property. Then Reynolds’ transport theorem can be written for sSN  , and sη  as: 
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For a steady flow, the partial derivatives with respect to time are zero, that is 0 t , and the 

second law of thermodynamics becomes: 
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For one-dimensional steady flow through a streamtube, the second law of thermodynamics of fluid 

flow through the streamtube can be formulated as: 
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For one-dimensional flow, the velocity vectors are perpendicular to the inlet and outlet surface of 

the streamtubes. Then 
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The properties are also uniform over each cross section, so that 
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using the continuity equation AVρm  , eqn. 4.30 becomes: 
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If there is no heat transfer, eqn. 4.31 becomes 
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When the flow process is reversible and adiabatic, i.e. isentropic eqn. 4.32 holds: 
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