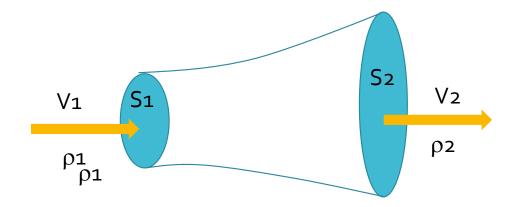
6.WEEK


CHE 212 FLUID MECHANICS

Assoc.Prof. Dr. Ayşe Karakeçili

Ankara University
Chemical Engineering Department

OVERALL MASS BALANCE and CONTINUITY EQUATION

 In fluid dynamics fluids are in motion. The principles of conservation of mass are applied to the system. Consider the flow through a conduit as below:

With a simple mass balance:

$$\dot{m} = \rho_1 V_1 S_1 = \rho_2 V_2 S_2$$

CONTINUITY EQUATION

FLOW OF COMPRESSIBLE FLUIDS MACH NUMBER

- Chemical engineering practice involves a relatively small area of compressible fluid flow.
- In compresible flow at ordinary densities and high velocities the basic parameter is MACH number.
- The Mach number is defined as the ratio of the speed of the fluid to the speed of the sound in the fluid under conditions of flow.
- Compressibility; is a measure of change in fluid density due to external forces.

FLOW SIMILARITY and MODEL STUDIES

- To be useful, a model test must yield data that can be scaled to obtain the forces, moments and dynamic loads that would exist on the full-scale proto-type.
- Geometric Similarity; requires that the modal and prototype be the same shape.
- Kinematic Similarity; requires that the regimes of flow be the same for model and prototype.
- Dynamic Similarity; requires the forces acting are the same type of forces.