ENE 302 – Energy Conversion Processes II

WEEK 3: FOSSIL FUELS

PROBLEM SETS

Problem 1: Proximate analysis of a coal was carried out by taking three samples as follows:

a) First sample is taken in 25 ml silica crucible of 16.3256 g and weighed as 17.1348 g. It is heated at 105 °C in a hot air oven till constant weight is obtained. Its weight is 17.1239 g.

Minerals and coal 17

b) Second sample is taken in another 25 ml silica crucible of 17.0826 g and weighed as 17.9301 g. It is heated at 800 °C in a muffle furnace till all the coal in it completely burns. Its weight is 17.3846 g.

c) Third sample is taken in a 18.5364 g silica volatile matter crucible and weighed as 19.3579 g. This is kept in a muffle furnace at 925 °C for 7minutes and then weighed as 19.1603 g.

Calculate

- i) Percent moisture
- ii) Percent mineral matter
- iii) Percent coal substance

Solution 1:

(i) Weight of the coal sample=17.1348-16.3256=0.8092 g

Weight of the moisture=17.1348-17.1239=0.0109 g

% Moisture=M=0.01090/0.8092×100=1.35%

(ii) Weight of the coal sample=17.9301-17.0826=0.8475 g

Weight of the ash=17.3846-17.0826=0.3020 g

% Ash=A=0.3020/0.8475×100=35.63%

(iii) Weight of the coal sample=19.3579-18.5364=0.8215 g

Weight of volatile matter and moisture=19.3579-19.1603=0.1976 g

Since fresh sample is used

% Volatile matter+Moisture=0.1976/0.8215×100=24.05%

% Volatile matter=V=24.05-01.35=22.70%

% Fixed carbon=100-(01.35+22.70+35.63)=40.32%

% Mineral matter=1.1Ash=1.1×35.63=39.19%

% Volatile matter from coal substance=% Volatile matter-0.1%Ash

% Volatile matter from coal substance=%22.70-0.1×35.63=19.14%

% Coal substance=% Fixed carbon+% Volatile matter from coal substance =40.32+19.14=59.46%

Problem 2:

A coal has 2.34% moisture, 23.45% volatile matter and 45.67% ash. Calculate ash% on dry basis, volatile matter on d.a.f basis and fixed carbon on d.m.m.f basis.

Solution 2:

% Fixed carbon=100-2.34-23.45-45.67=28.54%

Proximate Analysis of Coal M=02.34% V=23.45% A=45.67% FC=28.54%

% Ash on dry basis=A/100-M×100=45.67/100-02.34×100=46.76%

% Volatile matter on d.a.f basis=V/100-M-A×100=23.45/100-02.34-45.67×100=45.10%

% Fixed carbon on d.m.m.f basis=FC/100-M-1.1A×100 % Fixed carbon on d.m.m.f basis =28.54/100-02.34-1.1×45.67×100=60.18%

Alternately, fixed carbon can also be calculated through volatile matter

% Volatile matter on d.m.m.f basis=V-0.1A/100-M-1.1A×100

Volatile matter on d.m.m.f basis =23.45-0.1×45.67/100-02.34-1.1×45.67×100=39.82%

% Fixed carbon on d.m.m.f basis=100-39.82=60.18%

Problem 3:

A gaseous fuel contains 75 % v/v (volume percent) methane (CH₄), 15.0 % n-buthane ($n-C_4H_{10}$), 5.0 % iso-buthane (iso-C₄H₁₀), and 5.0 % N₂ (noncombustible).

- a) Calculate the higher heating value (HHV) and the lower heating value (LHV) of this fuel in **kJ/mol**, using heats of combustion in related table.
- b) Calculate the higher heating value (HHV) and the lower heating value (LHV) of the fuel in kJ/kg.

Solution 3:

a) Using Enthalpy Tables

Methane

$$CH_{4(g)} + 2O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{(v)},$$

 $\Delta \hat{H}_c^o = -890.36 \ kJ/mol, \quad HHV = 890.36 \ kJ/mol$
 $HHV = LHV + n\hat{H}_v(H_2O, 25^oC),$
 $890.36 = LHV + 2 * 44.01 \rightarrow LHV = 802.34 \ kJmol \ CH_4$

n-butane

 $\begin{aligned} C_4 H_{10(g)} &+ 13/2O_{2(g)} \rightarrow 4CO_{2(g)} + 5H_2O_{(v)}, \\ \Delta \hat{H}_c^o &= -2878.5 \ kJ/mol, \quad HHV = 2878.5 \ kJ/mol \\ HHV &= LHV + n\hat{H}_v(H_2O, 25^oC), \\ 2878.5 &= LHV + 5 * 44.01 \rightarrow LHV = 2658.45 \ kJmol \ C_4H_{10} \end{aligned}$

<u>iso-butane</u>

$$\begin{split} & C_4 H_{10(g)} + 13/2 O_{2(g)} \to 4 C O_{2(g)} + 5 H_2 O_{(v)}, \\ & \Delta \widehat{H}_c^o = -2868.8 \ kJ/mol, \quad HHV = 2868.8 \ kJ/mol \\ & HHV = LHV + n \widehat{H}_v(H_2 O, 25^o C), \end{split}$$

 $2868.8 = LHV + 5 * 44.01 \rightarrow LHV = 2648.75 \ kJmol \ C_3H_8$

$$HHV_{gas\,fuel} = \sum x_i (HHV)_i = 0.75 * 890.36 + 0.15 * 2878.5 + 0.05 * 2868.8$$
$$= 1242.98 \, kJ/mol$$

$$LHV_{gas\,fuel} = \sum x_i (LHV)_i = 0.75 * 802.34 + 0.15 * 2658.45 + 0.05 * 2648.75$$
$$= 1132.96 \, kJ/mol$$

b) volume percent = mol percent

For 1 mol gasous fuel;

$$\begin{bmatrix} \frac{CH_4}{(0.75 \ mol \ CH_4)} \left(16.04 \frac{g}{mol}\right) + \underbrace{(0.15 \ast 58.12)}^{n-C_4H_{10}} + \underbrace{(0.05 \ast 58.12)}^{iso-C_4H_{10}} + \underbrace{(0.05 \ast 58.12)}^{N_2} + \underbrace{(0.05 \ast 58.12)}^{N_2}$$

Problem 4:

A gas (fuel) contains 80.0 wt % propane (C₃H₈), 15.0 wt % n-butane (C₄H₁₀) and 5.0 wt % water.

- a. Calculate the molar composition of this gas (fuel) on both a wet and a dry basis and the ratio (mol H₂O/mol dry gas).
- b. If 100 kg/h of this fuel is to be burned with 30 % excess air, what is the required air feed rate (kmol/h)?

Atomic weight(s): C: 12, H: 1, O: 16

Solution 4 :

(a) Basis: 100 g fuel

Species of the fuel	mass (g)	MW (g/mol)	n (mol)	mole % (wet basis)	mole % (dry basis)
C ₃ H ₈	80	44	1.818	77.26	87.57
C ₄ H ₁₀	15	58	0.258	10.97	12.43
H ₂ O	5	18	0.277	11.77	
Total	100		2.353	100	100

$$ratio = \frac{H_2O, mol}{totalmoles, dry} = \frac{0.277}{(2.353 - 0.277)} = \frac{0.277}{2.076} = 0.133 \frac{mol \ H_2O}{mol \ dry \ fuel}$$

Solution (b)

C₄H₁₀+13/2O₂→ 4CO₂+5H₂O

Calculation of theoretical O₂:

For C₃H₈
$$\frac{100 \ kg \ fuel}{h} x \frac{80 \ kg \ C_3H_8}{100 \ kg \ fuel} x \frac{1 \ kmol \ C_3H_8}{44 \ kg \ C_3H_8} x \frac{5 \ kmol \ O_2}{1 \ kmol \ C_3H_8} = 9.09 \ kmol \ O_2 \ / h$$

For C₄H₁₀
$$\frac{100 \ kg \ fuel}{h} x \frac{15 \ kg \ C_4 H_{10}}{100 \ kg \ fuel} x \frac{1 \ kmol \ C_4 H_{10}}{58 \ kg \ C_4 H_{10}} x \frac{6.5 \ kmol \ O_2}{1 \ kmol \ C_4 H_{10}} = 1.68 \ kmol \ O_2 \ / h$$

Total O2: 9.09+1.68=10.77 kmol O2/h

Required air feed rate

$$\frac{10.77 \text{ kmol } O_2}{h} \times \frac{100 \text{ kmol air}}{21 \text{ kmol } O_2} = 51.286 \text{ kmol } \frac{\text{air}}{h}$$

51.286x1.30=66.67 kmol air/h

$$\frac{10.77 \text{ kmol } O_2}{h} x \frac{100 \text{ kmol air}}{21 \text{ kmol } O_2} x \frac{130 \text{ kmol air } (30\%)}{100 \text{ kmol air}} = 66.67 \frac{\text{ kmol air}}{h}$$

Problem 5:

A gas (fuel) contains 100 % Benzene gas (C_6H_6) reacts with hydrogen (H₂) to produce cyclohexane (C_6H_{12}).

$$C_6H_6(g) + 3 H_2(g) \rightarrow C_6H_{12}(g), \quad \Delta Hr = -206 \text{ kj/mol } C_6H_6$$

Conversion of $C_6H_6(g)$ is 60 %. 5 mol of $H_2(g)$ enters the reactor at 100 °C, 1 atm. 2 mol of $C_6H_6(g)$ enters the reactor at 25 °C, 1 atm. Product gas stream leaves the reactor at 70 °C, 1 atm. The flowchart is given below. Determine the amount of heat (Q) that should be removed from the reactor.

Mass balance:

Basis: 2 mol benzene & 5 mol hydrogen in feed stream

Molecule	In	Out	Reacted
C ₆ H ₆	2	0.8	1.2
H ₂	5	1.4	3.6
C ₆ H ₁₂	0	1.2	-

Fractional conversion of Benzene = $0.6 \rightarrow 2 \text{ mol } C_6H_6 \times 0.6 = 1.2 \text{ mol } C_6H_6$ reacted

$\rightarrow 2 - 1.2 = 0.8 \text{ mol } C_6H_6 \text{ out}$

 $1 \text{ mol } C_6H_6 \rightarrow 3 \text{ mol } H_2 \text{ reacts } \rightarrow \rightarrow 1.2 \text{ mol } C_6H_6 \rightarrow 3.6 \text{ mol } H_2 \text{ reacts}$

\rightarrow 5 – 3.6 = 1.4 mol H₂ out.

 $1 \text{ mol } C_6H_6 \rightarrow 1 \text{ mol } C_6H_{12} \text{ produced } \rightarrow \rightarrow 1.2 \text{ mol } C_6H_6 \rightarrow \textbf{1.2 mol } C_6H_{12} \text{ produced } P_{12} \text{ produc$

Energy balance:

Molecule	Nin	Hin	Nout	Houy
C ₆ H ₆	2	0(T _{ref})	0.8	H ₂
H ₂	5	H ₁	1.4	H ₃
C ₆ H ₁₂	0	-	1.2	H ₄

<u>H</u>1

In Table B.8 \rightarrow H₂ (100 °C) = 7.96 kj/mol

= 4.028 kj/mol

<u>H2</u>

$$C_6H_6(70 \text{ °C}) = \int_{25}^{70} (74.06 \times 10^{-3} + 32.95 \times 10^{-5}T) dT$$
 (Table B-2)

<u>H</u>3

H₂(70 °C) = $\int_{25}^{70} (28.84 \times 10^{-3} + 0.00765 \times 10^{-5}T) dT$ (Table B-2) = 1.289 kj/mol

<u>H</u>4

 $C_6H_{12}(70 \text{ °C}) = \int_{25}^{70} (94.14 \times 10^{-3} + 49.62 \times 10^{-5}T) dT$ (Table B-2)

= 5.295 kj/mol

$$\Delta H = Q$$

$$\Delta H = \xi \times \Delta H_r + \sum_{out} n_i H_i - \sum_{in} n_i H_i$$

$$\xi = \frac{n_{C6H6}, reacted}{|\gamma_{C6H6}|} = \frac{1.2}{1} = 1.2$$

 $\Delta H = (1.2) \times (-206) + [(0.8 \times 4.028) + (1.4 \times 1.289) + (1.2) \times (5.295)] - (5 \times 7.96))$ = -275.6 kj

Problem 6:

Compare the thermal efficiency nth of a subcritical, supercritical, and ultra-supercritical steam power plants operating on the Rankine cycle under the following conditions:

Case 1: live steam conditions p1=180 bars and t1=550°C (subcritical power plant)

Case 2: live steam conditions p1=300 bars and t1=600°C (supercritical power plant)

Case 3: live steam conditions p1=350 bars and t1=750°C (ultra-supercritical power plant)

Condenser pressure is 0.04 bar. The work of feed pump may be ignored.

Solution 6:

From water/steam table, enthalpy of condensate at 0.04 bar is

h3=121.4 kJ/ kg.

<u>Case 1</u>

Subcritical cycle:

P₁=180 bars, T₁=550°C.

From h - s diagram, enthalpies of live and exhaust steam, respectively, are

 h_1 =3425 kJ/kg, and h_2 =1935 kJ / kg.

With feed pump work wp=0, the cycle thermal efficiency is given by;

 η th=(h₁-h₂)/(h₁-h₃) =(3425 - 1935)/(3425 - 121.4) = 0.454.

<u>Case 2</u>

Supercritical cycle:

P₁=300 bars, T₁=600°C.

Enthalpies of live and exhaust steam, respectively, are

h1=3450 kJ/kg, h2=1885 kJ/kg. Hence,

ηth=(3450 - 1885)/(3450 - 121.4)=0.47.

Case 3

Ultra-supercritical cycle:

P₁=350 bars, T₁=750°C.

Enthalpies of live and exhaust steam, respectively, are

h1=3850 kJ/kg, h2=1980 kJ/kg. Hence,

 η th=(3850 - 1980)/(3850 - 121.4)=0.50.

Compared to the subcritical power plant (Case 1), the efficiency η th of supercritical power plant (Case 2) is higher by $(0.47/0.454 - 1) \times 100=3.55\%$, and η th of the ultra-supercritical power plant (Case 3) is higher by $(0.5/0.454 - 1) \times 100=10.5\%$, respectively.

Problem 7:

A single-reheat subcritical steam power plant (refer to Figure 3.5) is operating under the following conditions:

- Plant electric power output Pel=600MW
- Live steam condition:P1=180 bars and T1=550°C
- •Reheat steam condition: P2=20 bars and T3=560°C
- •Turbine isentropic efficiency nit=0.92
- •Condenser pressure P3=0.04 bar
- •Fuel lower heating value LHV =29 MJ/kg

Calculate (a) plant heat addition and rejection rates, (b) plant thermal efficiency, (c) plant heat rate, and (d) plant steam and fuel rates. Ignore work of the feed pump.

Solution 7:

Enthalpies of steam and condensate (h-s diagram,)

•Live steam at 180 bars/550°C, enthalpy h₁= 3475 kJ/kg

•HP turbine exhaust steam at 20 bars, enthalpy h₂s= 2825 kJ/kg

•Reheat steam at 20 bars/560°C, enthalpy h₃= 3600 kJ/kg

- •LP turbine exhaust steam, enthalpy h4s= 2285 kJ/kg
- •Condensate (saturated water) at 0.04 bar h5= 121.4 kJ/ kg

Actual enthalpy of HP and LP turbine exhaust steam, respectively

h₂=h₁- (h1-h2s) x nit = 3475 - (3475 - 2825)×0.92 = 2877 kJ/kg

h₄=h₃- (h3-h4s) x ηit = 3600 - (3600 - 2285)×0.92 = 2390 kJ/kg

Plant thermal efficiency and heat rate (with wp=0)

 η th = wnet/qin = [(h₁-h₂)+(h₃-h₄)]/[(h₁-h₅)+(h₃-h₂)] =

[(3475 - 2877) + (3600 - 2390)] / [(3475 - 121.4) + (3600 - 2877)] = 0.4435

HR=3600/nth=3600/0.4435=8117 kJ / kWh

Plant rate of heat addition

Qin = Pel/nth = 600/0.4435=1352.9 MJ/s

Plant steam rate ms = Qin/[(h_1-h_5)+(h_3-h_2)] = 1,352,900/[(3475-121.4)+(3600 - 2877)] = 331.87 kg/s = 1194.7 t/h

Plant fuel rate mf = Qin/LHV=1352.9/29=46.7 kg/s = 167.9 t/h

Problem 8:

An advanced steam power plant is operating under the following conditions:

- Plant electric power output Pel=1200 MW
- •Fuel: bituminous coal with LHV of 30 MJ/kg
- •Plant net overall efficiency ηnet is 45%
- Wet flue gas volume per kg fuel Vg=9.85 m3/kg

Calculate (i) the plant net heat rate HR, (ii) the hourly fuel consumption rate of the plant mf, (iii) the plant-specific fuel consumption SFC, and (iv) the hourly flue gas flow rate Vg,h.

Solution 8:

Plant net heat rate HR =3600/nnet = 3600/0.45 = 8000kJ/kWh

Plant hourly fuel consumption rate mf = Pel/(LHV η net) = 1200/(30×0.45) = 88.89kg/s = 320 t/h

Plant-specific fuel consumption SFC = 3600 mf/Pel = 3600 s/h×88.89kg/s/1.2×106 kW = 0.267 kg/kWh

Hourly flue gas flow rate Vg,h = Vg × SFC × Pel = $9.85m3/kg \times 0.267 kg/kWh \times 1.2 \times 106kW = 3.152 \times 106 m3/h$

References:

1. R. M. Felder, R. W. Rousseau, L. G. Bullard, 2015, Elementary Principles of Chemical Processes, Wiley & Son's, 4th Ed.

M. Gürü, H. Yalçın, 2009, Stokiometri Problemleri, Gazi Kitapevi, 2. Baskı
 N. V. Khartchenko, V. M. Kharchenko, 2014, Advance Energy Systems, CRC Press, 2nd Ed.

4. D. V. S. Rao, 2016, Minerals and Coal Process Calculations, CRC Press, 1st Ed.