ENE 302 - Energy Conversion Processes II

WEEK 3: FOSSIL FUELS

PROBLEM SETS

Problem 1: Proximate analysis of a coal was carried out by taking three samples as follows:
a) First sample is taken in 25 ml silica crucible of 16.3256 g and weighed as 17.1348 g. It is heated at $105^{\circ} \mathrm{C}$ in a hot air oven till constant weight is obtained. Its weight is 17.1239 g .

Minerals and coal 17
b) Second sample is taken in another 25 ml silica crucible of 17.0826 g and weighed as 17.9301 g . It is heated at $800^{\circ} \mathrm{C}$ in a muffle furnace till all the coal in it completely burns. Its weight is 17.3846 g .
c) Third sample is taken in a 18.5364 g silica volatile matter crucible and weighed as 19.3579 g . This is kept in a muffle furnace at $925^{\circ} \mathrm{C}$ for 7 minutes and then weighed as 19.1603 g .

Calculate
i) Percent moisture
ii) Percent mineral matter
iii) Percent coal substance

Solution 1:

(i) Weight of the coal sample $=17.1348-16.3256=0.8092 \mathrm{~g}$

Weight of the moisture $=17.1348-17.1239=0.0109 \mathrm{~g}$
$\%$ Moisture $=\mathrm{M}=0.01090 / 0.8092 \times 100=1.35 \%$
(ii) Weight of the coal sample $=17.9301-17.0826=0.8475 \mathrm{~g}$

Weight of the ash $=17.3846-17.0826=0.3020 \mathrm{~g}$
\% Ash=A=0.3020/0.8475 $\times 100=35.63 \%$
(iii) Weight of the coal sample $=19.3579-18.5364=0.8215 \mathrm{~g}$

Weight of volatile matter and moisture $=19.3579-19.1603=0.1976 \mathrm{~g}$

Since fresh sample is used
\% Volatile matter+Moisture=0.1976/0.8215×100=24.05\%
\% Volatile matter=V=24.05-01.35=22.70\%
\% Fixed carbon=100 $-(01.35+22.70+35.63)=40.32 \%$
\% Mineral matter=1.1Ash=1.1 $\times 35.63=39.19 \%$
\% Volatile matter from coal substance=\% Volatile matter-0.1\%Ash
\% Volatile matter from coal substance=\%22.70-0.1 $\times 35.63=19.14 \%$
\% Coal substance=\% Fixed carbon+\% Volatile matter from coal substance $=40.32+19.14=59.46 \%$

Problem 2:

A coal has 2.34% moisture, 23.45% volatile matter and 45.67% ash. Calculate ash\% on dry basis, volatile matter on d.a.f basis and fixed carbon on d.m.m.f basis.

Solution 2:

\% Fixed carbon=100-2.34-23.45-45.67=28.54\%

Proximate Analysis of Coal
$\mathrm{M}=02.34 \%$
$V=23.45 \%$
A=45.67\%
FC=28.54\%
\% Ash on dry basis $=\mathrm{A} / 100-\mathrm{M} \times 100=45.67 / 100-02.34 \times 100=46.76 \%$
\% Volatile matter on d.a.f
basis $=\mathrm{V} / 100-\mathrm{M}-\mathrm{A} \times 100=23.45 / 100-02.34-45.67 \times 100=45.10 \%$
\% Fixed carbon on d.m.m.f basis=FC/100 $-M-1.1 \mathrm{~A} \times 100$
$\%$ Fixed carbon on d.m.m.f basis $=28.54 / 100-02.34-1.1 \times 45.67 \times 100=60.18 \%$

Alternately, fixed carbon can also be calculated through volatile matter
\% Volatile matter on d.m.m.f basis $=\mathrm{V}-0.1 \mathrm{~A} / 100-\mathrm{M}-1.1 \mathrm{~A} \times 100$

Volatile matter on d.m.m.f basis
$=23.45-0.1 \times 45.67 / 100-02.34-1.1 \times 45.67 \times 100=39.82 \%$
\% Fixed carbon on d.m.m.f basis=100-39.82=60.18\%

Problem 3:

A gaseous fuel contains $75 \% \mathrm{v} / \mathrm{v}$ (volume percent) methane $\left(\mathrm{CH}_{4}\right), 15.0 \%$ n-buthane ($\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{10}$), 5.0% iso-buthane (iso- $\mathrm{C}_{4} \mathrm{H}_{10}$), and $5.0 \% \mathrm{~N}_{2}$ (noncombustible).
a) Calculate the higher heating value (HHV) and the lower heating value (LHV) of this fuel in $\mathbf{k J} / \mathbf{m o l}$, using heats of combustion in related table.
b) Calculate the higher heating value (HHV) and the lower heating value (LHV) of the fuel in $\mathbf{k J} / \mathbf{k g}$.

Solution 3:

a) Using Enthalpy Tables

Methane

$\mathrm{CH}_{4(\mathrm{~g})}+\mathbf{2 O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+\mathbf{2 H}_{\mathbf{2}} \mathrm{O}_{(v)}$,
$\Delta \widehat{H}_{c}^{o}=-890.36 \mathrm{~kJ} / \mathrm{mol}, \quad H H V=890.36 \mathrm{~kJ} / \mathrm{mol}$
$H H V=L H V+n \widehat{H}_{v}\left(H_{2} O, 25^{\circ} C\right)$,
$890.36=L H V+2 * 44.01 \rightarrow L H V=802.34 \mathrm{kJmol} \mathrm{CH}_{4}$

n-butane

$$
\mathrm{C}_{4} \mathrm{H}_{10(g)}+13 / 2 \mathrm{O}_{2(g)} \rightarrow 4 \mathrm{CO}_{2(g)}+5 \mathrm{H}_{2} \mathrm{O}_{(v)},
$$

$$
\Delta \widehat{H}_{c}^{o}=-2878.5 \mathrm{~kJ} / \mathrm{mol}, \quad H H V=2878.5 \mathrm{~kJ} / \mathrm{mol}
$$

$$
H H V=L H V+n \widehat{H}_{v}\left(H_{2} O, 25^{\circ} C\right)
$$

$$
2878.5=L H V+5 * 44.01 \rightarrow L H V=2658.45 \mathrm{kJmol}_{4} H_{10}
$$

iso-butane

$\mathrm{C}_{\mathbf{4}} \mathrm{H}_{\mathbf{1 0}(\mathrm{g})}+\mathbf{1 3} / \mathbf{2 O _ { 2 (g) }} \rightarrow \mathbf{4 \mathrm { CO } _ { 2 (g) }}+\mathbf{5} \mathrm{H}_{\mathbf{2}} \mathrm{O}_{(v)}$,
$\Delta \widehat{H}_{c}^{o}=-2868.8 \mathrm{~kJ} / \mathrm{mol}, \quad H H V=2868.8 \mathrm{~kJ} / \mathrm{mol}$
$H H V=L H V+n \widehat{H}_{v}\left(H_{2} O, 25^{\circ} C\right)$,

$$
2868.8=L H V+5 * 44.01 \rightarrow L H V=2648.75 \mathrm{kJmol}_{3} \mathrm{H}_{8}
$$

$$
\begin{aligned}
H H V_{\text {gas fuel }}= & \sum x_{i}(H H V)_{i}=0.75 * 890.36+0.15 * 2878.5+0.05 * 2868.8 \\
& =\mathbf{1 2 4 2 . 9 8} \mathbf{~ k J} / \mathbf{m o l}
\end{aligned}
$$

$$
L H V_{\text {gas fuel }}=\sum x_{i}(L H V)_{i}=0.75 * 802.34+0.15 * 2658.45+0.05 * 2648.75
$$

$$
=1132.96 \mathrm{~kJ} / \mathrm{mol}
$$

b) volume percent $=$ mol percent

For 1 mol gasous fuel;

Problem 4:

A gas (fuel) contains 80.0 wt \% propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right), 15.0$ wt \% n-butane $\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)$ and 5.0 wt $\%$ water.
a. Calculate the molar composition of this gas (fuel) on both a wet and a dry basis and the ratio ($\mathrm{mol} \mathrm{H} \mathrm{H}_{2} \mathrm{O} / \mathrm{mol}$ dry gas).
b. If $100 \mathrm{~kg} / \mathrm{h}$ of this fuel is to be burned with 30% excess air, what is the required air feed rate ($\mathrm{kmol} / \mathrm{h}$)?

Atomic weight(s): C: 12, H: 1, O: 16

$$
\begin{aligned}
& {[\overbrace{\left(0.75 \mathrm{~mol} \mathrm{CH}_{4}\right)\left(16.04 \frac{g}{\mathrm{~mol}}\right)}^{\mathrm{CH}_{4}}+\overbrace{(0.15 * 58.12)}^{n-C_{4} H_{10}}+\overbrace{(0.05 * 58.12)}^{i s o-C_{4} H_{10}}+\overbrace{(0.05 * 58.12)}^{N_{2}}]} \\
& =25.055 \mathrm{~g}=\mathbf{0 . 0 2 5} \mathbf{~ k g} \\
& H H V \rightarrow 1242.98 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \times \frac{1 \mathrm{~mol}}{0.025 \mathrm{~kg}}=49719.2 \frac{\mathrm{~kJ}}{\mathbf{k g}} \\
& L H V \rightarrow 1132.96 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \times \frac{1 \mathrm{~mol}}{0.025 \mathrm{~kg}}=45318.4 \frac{\mathrm{~kJ}}{\mathrm{~kg}}
\end{aligned}
$$

Solution 4 :

(a) Basis: 100 g fuel

Species of the fuel	mass (g)	MW $(\mathrm{g} / \mathrm{mol})$	$\mathrm{n}(\mathrm{mol})$	mole \% (wet basis)	mole \% (dry basis)
$\mathrm{C}_{3} \mathrm{H}_{8}$	80	44	1.818	77.26	87.57
$\mathrm{C}_{4} \mathrm{H}_{10}$	15	58	0.258	10.97	12.43
$\mathrm{H}_{2} \mathrm{O}$	5	18	0.277	11.77	
Total	100		2.353	100	100

$$
\text { ratio }=\frac{\mathrm{H}_{2} \mathrm{O}, \mathrm{~mol}}{\text { totalmoles, dry }}=\frac{0.277}{(2.353-0.277)}=\frac{0.277}{2.076}=0.133 \frac{\mathrm{~mol} \mathrm{H}}{2} \mathrm{O}
$$

Solution (b)

$\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \longrightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{C}_{4} \mathrm{H}_{10}+13 / 2 \mathrm{O}_{2} \longrightarrow 4 \mathrm{CO}_{2}+5 \mathrm{H}_{2} \mathrm{O}$

Calculation of theoretical O_{2} :

For $\mathrm{C}_{3} \mathrm{H}_{8} \frac{100 \mathrm{~kg} \text { fuel }}{\mathrm{h}} x \frac{80 \mathrm{~kg} \mathrm{C}_{3} \mathrm{H}_{8}}{100 \mathrm{~kg} \mathrm{fuel}} \times \frac{1 \mathrm{kmol} \mathrm{C}_{3} \mathrm{H}_{8}}{44 \mathrm{~kg} C_{3} \mathrm{H}_{8}} \times \frac{5 \mathrm{kmol} \mathrm{O}_{2}}{1 \mathrm{kmol} \mathrm{C}_{3} \mathrm{H}_{8}}=9.09 \mathrm{kmol} \mathrm{O}_{2} / \mathrm{h}$

For $\mathrm{C}_{4} \mathrm{H}_{10} \frac{100 \mathrm{~kg} \text { fuel }}{\mathrm{h}} x \frac{15 \mathrm{~kg} C_{4} \mathrm{H}_{10}}{100 \mathrm{~kg} \mathrm{fuel}} x \frac{1 \mathrm{kmol} \mathrm{C}_{4} \mathrm{H}_{10}}{58 \mathrm{~kg} \mathrm{C} C_{4} H_{10}} x \frac{6.5 \mathrm{kmol} \mathrm{O}_{2}}{1 \mathrm{kmol} C_{4} \mathrm{H}_{10}}=1.68 \mathrm{kmol} \mathrm{O}_{2} / \mathrm{h}$

Total $\mathrm{O}_{2}: 9.09+1.68=10.77 \mathrm{kmol} \mathrm{O} 2 / \mathrm{h}$

Required air feed rate
$\frac{10.77 \mathrm{kmol} \mathrm{O}_{2}}{h} \times \frac{100 \mathrm{kmol} \text { air }}{21 \mathrm{kmol} \mathrm{O}_{2}}=51.286 \mathrm{kmol} \frac{\text { air }}{\mathrm{h}}$
$51.286 \times 1.30=66.67 \mathrm{kmol}$ air/h
or

$$
\frac{10.77 \mathrm{kmol} \mathrm{O}}{h} x \frac{100 \mathrm{kmol} \mathrm{air}}{21 \mathrm{kmol} \mathrm{O}}{ }_{2} \quad x \frac{130 \mathrm{kmol} \text { air }(30 \%)}{100 \mathrm{kmol} \mathrm{air}}=66.67 \frac{\mathrm{kmol} \text { air }}{\mathrm{h}}
$$

Problem 5:

A gas (fuel) contains 100 \% Benzene gas $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ reacts with hydrogen $\left(\mathrm{H}_{2}\right)$ to produce cyclohexane $\left(\mathrm{C}_{6} \mathrm{H}_{12}\right)$.

$$
\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{12}(\mathrm{~g}), \quad \Delta \mathrm{Hr}=-206 \mathrm{kj} / \mathrm{mol}_{6} \mathrm{H}_{6}
$$

Conversion of $\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{~g})$ is $60 \% .5 \mathrm{~mol}$ of $\mathrm{H}_{2}(\mathrm{~g})$ enters the reactor at $100{ }^{\circ} \mathrm{C}$, 1 atm. 2 mol of $\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{~g})$ enters the reactor at $25^{\circ} \mathrm{C}, 1 \mathrm{~atm}$. Product gas stream leaves the reactor at $70^{\circ} \mathrm{C}, 1$ atm. The flowchart is given below. Determine the amount of heat (Q) that should be removed from the reactor.

Mass balance:

Basis: 2 mol benzene \& 5 mol hydrogen in feed stream

Molecule	In	Out	Reacted
$\mathrm{C}_{6} \mathrm{H}_{6}$	2	0.8	1.2
H_{2}	5	1.4	3.6
$\mathrm{C}_{6} \mathrm{H}_{12}$	0	1.2	-

Fractional conversion of Benzene $=0.6 \rightarrow 2 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{6} \times 0.6=1.2 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{6}$ reacted
$\rightarrow 2-1.2=0.8 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{6}$ out
$1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{6} \rightarrow 3 \mathrm{~mol} \mathrm{H} 2$ reacts $\rightarrow 1.2 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{6} \rightarrow 3.6 \mathrm{~mol} \mathrm{H}_{2}$ reacts
$\rightarrow 5-3.6=1.4 \mathbf{~ m o l ~ H} \mathbf{~ o u t}$.
$1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{6} \rightarrow 1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12}$ produced $\rightarrow \rightarrow 1.2 \mathrm{~mol}_{6} \mathrm{H}_{6} \rightarrow \mathbf{1 . 2} \mathbf{~ m o l ~} \mathrm{C}_{6} \mathrm{H}_{12}$ produced

Energy balance:

Molecule	$n_{\text {in }}$	$H_{\text {in }}$	$n_{\text {out }}$	$\mathrm{H}_{\text {ouy }}$
$\mathrm{C}_{6} \mathrm{H}_{6}$	2	$0\left(\mathrm{~T}_{\text {ref }}\right)$	0.8	H_{2}
H_{2}	5	H_{1}	1.4	H_{3}
$\mathrm{C}_{6} \mathrm{H}_{12}$	0	-	1.2	H_{4}

$\underline{H_{1}}$
In Table B. $8 \rightarrow \mathrm{H}_{2}\left(100{ }^{\circ} \mathrm{C}\right)=7.96 \mathrm{kj} / \mathrm{mol}$

$\underline{\mathrm{H}_{2}}$

$\mathrm{C}_{6} \mathrm{H}_{6}\left(70^{\circ} \mathrm{C}\right)=\int_{25}^{70}\left(74.06 \times 10^{-3}+32.95 \times 10^{-5} \mathrm{~T}\right) d T($ Table B-2 $)$

$$
=4.028 \mathrm{kj} / \mathrm{mol}
$$

$\underline{\mathrm{H}_{3}}$
$\mathrm{H}_{2}\left(70^{\circ} \mathrm{C}\right)=\int_{25}^{70}\left(28.84 \times 10^{-3}+0.00765 \times 10^{-5} T\right) d T($ Table B-2 $)$

$$
=1.289 \mathrm{kj} / \mathrm{mol}
$$

$\underline{\mathrm{H}_{4}}$

$\mathrm{C}_{6} \mathrm{H}_{12}\left(70^{\circ} \mathrm{C}\right)=\int_{25}^{70}\left(94.14 \times 10^{-3}+49.62 \times 10^{-5} \mathrm{~T}\right) d T($ Table B-2 $)$ $=5.295 \mathrm{kj} / \mathrm{mol}$

$$
\begin{gathered}
\Delta H=Q \\
\Delta H=\xi \times \Delta H_{r}+\sum_{\text {out }} n_{i} H_{i}-\sum_{\text {in }} n_{i} H_{i}
\end{gathered}
$$

$$
\xi=\frac{n_{C 6 H 6}, \text { reacted }}{\left|\gamma_{C 6 H 6}\right|}=\frac{1.2}{1}=1.2
$$

$\Delta H=(1.2) \times(-206)+[(0.8 \times 4.028)+(1.4 \times 1.289)+(1.2) \times(5.295)\}-(5 \times 7.96))$ $=-275.6 \mathrm{kj}$

Problem 6:

Compare the thermal efficiency η th of a subcritical, supercritical, and ultra-supercritical steam power plants operating on the Rankine cycle under the following conditions:

Case 1: live steam conditions
$\mathrm{p} 1=180$ bars and $\mathrm{t} 1=550^{\circ} \mathrm{C}$ (subcritical power plant)

Case 2: live steam conditions
$\mathrm{p} 1=300$ bars and $\mathrm{t} 1=600^{\circ} \mathrm{C}$ (supercritical power plant)

Case 3: live steam conditions
$\mathrm{p} 1=350$ bars and $\mathrm{t} 1=750^{\circ} \mathrm{C}$ (ultra-supercritical power plant)

Condenser pressure is 0.04 bar. The work of feed pump may be ignored.

Solution 6:

From water/steam table, enthalpy of condensate at 0.04 bar is
$\mathrm{h} 3=121.4 \mathrm{~kJ} / \mathrm{kg}$.

Case 1

Subcritical cycle:
$P_{1}=180$ bars, $T_{1}=550^{\circ} \mathrm{C}$.
From h - s diagram, enthalpies of live and exhaust steam, respectively, are
$\mathrm{h}_{1}=3425 \mathrm{~kJ} / \mathrm{kg}$, and $\mathrm{h}_{2}=1935 \mathrm{~kJ} / \mathrm{kg}$.
With feed pump work $w p=0$, the cycle thermal efficiency is given by;
η th $=\left(h_{1}-h_{2}\right) /\left(h_{1}-h_{3}\right)=(3425-1935) /(3425-121.4)=0.454$.

Case 2

Supercritical cycle:
$P_{1}=300$ bars, $T_{1}=600^{\circ} \mathrm{C}$.
Enthalpies of live and exhaust steam, respectively, are
$h_{1}=3450 \mathrm{~kJ} / \mathrm{kg}, \mathrm{h}_{2}=1885 \mathrm{~kJ} / \mathrm{kg}$. Hence,
η th $=(3450-1885) /(3450-121.4)=0.47$.

Case 3

Ultra-supercritical cycle:
$P_{1}=350$ bars, $T_{1}=750^{\circ} \mathrm{C}$.
Enthalpies of live and exhaust steam, respectively, are
$h_{1}=3850 \mathrm{~kJ} / \mathrm{kg}, \mathrm{h}_{2}=1980 \mathrm{~kJ} / \mathrm{kg}$. Hence,
η th $=(3850-1980) /(3850-121.4)=0.50$.
Compared to the subcritical power plant (Case 1), the efficiency η th of supercritical power plant (Case 2) is higher by $(0.47 / 0.454-1) \times 100=3.55 \%$, and η th of the ultrasupercritical power plant (Case 3) is higher by ($0.5 / 0.454-1$) $\times 100=10.5 \%$, respectively.

Problem 7:

A single-reheat subcritical steam power plant (refer to Figure 3.5) is operating under the following conditions:

- Plant electric power output Pel=600MW
- Live steam condition: $P_{1}=180$ bars and $\mathrm{T}_{1}=550^{\circ} \mathrm{C}$
-Reheat steam condition: $\mathrm{P}_{2}=20$ bars and $\mathrm{T}_{3}=560^{\circ} \mathrm{C}$
-Turbine isentropic efficiency η it=0.92
-Condenser pressure $\mathrm{P}_{3}=0.04$ bar
-Fuel lower heating value LHV $=29 \mathrm{MJ} / \mathrm{kg}$

Calculate (a) plant heat addition and rejection rates, (b) plant thermal efficiency, (c) plant heat rate, and (d) plant steam and fuel rates. Ignore work of the feed pump.

Solution 7:

Enthalpies of steam and condensate (h-s diagram,)
-Live steam at 180 bars $/ 550^{\circ} \mathrm{C}$, enthalpy $\mathrm{h}_{1}=3475 \mathrm{~kJ} / \mathrm{kg}$
-HP turbine exhaust steam at 20 bars, enthalpy $\mathrm{h}_{2} \mathrm{~S}=2825 \mathrm{~kJ} / \mathrm{kg}$
-Reheat steam at 20 bars $/ 560^{\circ} \mathrm{C}$, enthalpy $\mathrm{h}_{3}=3600 \mathrm{~kJ} / \mathrm{kg}$
-LP turbine exhaust steam, enthalpy $\mathrm{h}_{4} \mathrm{~S}=2285 \mathrm{~kJ} / \mathrm{kg}$
-Condensate (saturated water) at 0.04 bar $\mathrm{h}_{5}=121.4 \mathrm{~kJ} / \mathrm{kg}$

Actual enthalpy of HP and LP turbine exhaust steam, respectively

$$
\begin{aligned}
& h_{2}=h_{1}-(h 1-h 2 s) \times \eta \text { it }=3475-(3475-2825) \times 0.92=2877 \mathrm{~kJ} / \mathrm{kg} \\
& \mathrm{~h}_{4}=\mathrm{h}_{3}-(\mathrm{h} 3-\mathrm{h} 4 \mathrm{~s}) \times \eta \text { nit }=3600-(3600-2285) \times 0.92=2390 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Plant thermal efficiency and heat rate (with wp=0)

$$
\begin{aligned}
& \text { nth }=\text { wnet/qin }=\left[\left(h_{1}-h_{2}\right)+\left(h_{3}-h_{4}\right)\right] /\left[\left(h_{1}-h_{5}\right)+(h 3-h 2)\right]= \\
& {[(3475-2877)+(3600-2390)] /[(3475-121.4)+(3600-2877)]=0.4435}
\end{aligned}
$$

$$
\mathrm{HR}=3600 / \eta \mathrm{\eta}=3600 / 0.4435=8117 \mathrm{~kJ} / \mathrm{kWh}
$$

Plant rate of heat addition
Qin $=$ Pel $/ \eta$ th $=600 / 0.4435=1352.9 \mathrm{MJ} / \mathrm{s}$
Plant steam rate $\mathrm{ms}=\mathrm{Qin} /\left[\left(\mathrm{h}_{1}-\mathrm{h}_{5}\right)+\left(\mathrm{h}_{3}-\mathrm{h}_{2}\right)\right]=$ $1,352,900 /[(3475-121.4)+(3600-2877)]=331.87 \mathrm{~kg} / \mathrm{s}=1194.7 \mathrm{t} / \mathrm{h}$

Plant fuel rate $\mathrm{mf}=\mathrm{Qin} / \mathrm{LHV}=1352.9 / 29=46.7 \mathrm{~kg} / \mathrm{s}=167.9 \mathrm{t} / \mathrm{h}$

Problem 8:

An advanced steam power plant is operating under the following conditions:

- Plant electric power output Pel=1200 MW
-Fuel: bituminous coal with LHV of $30 \mathrm{MJ} / \mathrm{kg}$
-Plant net overall efficiency η net is 45%
- Wet flue gas volume per kg fuel $\mathrm{Vg}=9.85 \mathrm{~m} 3 / \mathrm{kg}$

Calculate (i) the plant net heat rate HR, (ii) the hourly fuel consumption rate of the plant mf , (iii) the plant-specific fuel consumption SFC, and (iv) the hourly flue gas flow rate Vg,h.

Solution 8:

Plant net heat rate $\mathrm{HR}=3600 /$ nnet $=3600 / 0.45=8000 \mathrm{~kJ} / \mathrm{kWh}$

Plant hourly fuel consumption rate $\mathrm{mf}=\mathrm{Pel} /(\mathrm{LHV} \eta n e t)=1200 /(30 \times 0.45)=88.89 \mathrm{~kg} / \mathrm{s}$ =320 t/h

Plant-specific fuel consumption SFC $=3600 \mathrm{mf} / \mathrm{Pel}=3600 \mathrm{~s} / \mathrm{h} \times 88.89 \mathrm{~kg} / \mathrm{s} / 1.2 \times 106 \mathrm{~kW}$ $=0.267 \mathrm{~kg} / \mathrm{kWh}$

Hourly flue gas flow rate $\mathrm{Vg}, \mathrm{h}=\mathrm{Vg} \times \mathrm{SFC} \times \mathrm{Pel}$
$=9.85 \mathrm{~m} 3 / \mathrm{kg} \times 0.267 \mathrm{~kg} / \mathrm{kWh} \times 1.2 \times 106 \mathrm{~kW}=3.152 \times 106 \mathrm{~m} 3 / \mathrm{h}$

References:

1. R. M. Felder, R. W. Rousseau, L. G. Bullard, 2015, Elementary Principles of Chemical Processes, Wiley \& Son's, $4^{\text {th }}$ Ed.
2. M. Gürü, H. Yalçın, 2009, Stokiometri Problemleri, Gazi Kitapevi, 2. Baskı
3. N. V. Khartchenko, V. M. Kharchenko, 2014, Advance Energy Systems, CRC Press, $2^{\text {nd }}$ Ed.
4. D. V. S. Rao, 2016, Minerals and Coal Process Calculations, CRC Press, $1^{\text {st }}$ Ed.
