
ENE 302 – Energy Conversion Processes II 

 

WEEK 6: SOLAR ENERGY 

 

INTRODUCTION 

During the day the sun has different positions. For low concentration systems (and low 

temperatures) tracking can be avoided (or limited to a few positions per year) if non-

imaging optics are used. For higher concentrations, however, if the mirrors or lenses 

do not move, then the focus of the mirrors or lenses changes (but also in these cases 

non-imaging optics provides the widest acceptance angles for a given concentration). 

Therefore, it seems unavoidable that there needs to be a tracking system that follows 

the position of the sun (for solar photovoltaic a solar tracker is only optional).  

The tracking system increases the cost and complexity. With this in mind, different 

designs can be distinguished in how they concentrate the light and track the position 

of the sun. 

THEORY 

Thermal Radiation 

Thermal radiation is a form of energy emission and transmission that depends entirely 

on the temperature characteristics of the emissive surface. Thermal radiation is in fact 

an electromagnetic wave that travels at the speed of light (C = 300,000 km/s in a 

vacuum). This speed is related to the wavelength (λ) and frequency (ν of the radiation 

as given by the equation: 

(eq.1) 

 

When a beam of thermal radiation is incident on the surface of a body, part of it is 

reflected away from the surface, part is absorbed by the body, and part is transmitted 

through the body. The various properties associated with this phenomenon are the 

fraction of radiation reflected, called reflectivity (ρ); the fraction of radiation absorbed, 

called absorptivity (α); and the fraction of radiation transmitted, called transmissivity 

(τ). The three quantities are related by the following equation: 

(eq.2) 



The following equation is used to express the dependence of these properties on the 

wavelength: 

(eq. 3) 

 

where  ρλ = Spectral reflectivity; αλ = Spectral absorptivity; τλ = Spectral transmissivity 

 

If a body absorbs all the impinging thermal radiation such that τ = 0, ρ = 0, and α = 1, 

regardless of the spectral character or directional preference of the incident radiation, 

it is called a blackbody. 

A blackbody is not only a perfect absorber, it is also characterized by an upper limit to 

the emission of thermal radiation. The energy emitted by a blackbody is a function of 

its temperature and is not evenly distributed over all wavelengths. The rate of energy 

emission per unit area at a particular wavelength is termed the monochromatic 

emissive power. Max Planck was the first to derive a functional relation for the 

monochromatic emissive power of a blackbody in terms of temperature and 

wavelength. This was done by using the quantum theory, and the resulting equation, 

called Planck’s equation for blackbody radiation, is given by 

(eq. 4) 

where 

Ebλ = monochromatic emissive power of a blackbody (W/m2-μm). 

T = temperature of the body (K). 

λ = wavelength (μm). 

C1 = constant = 3.74 x 108 W-μm4/m2. 

C2 = constant = 1.44 x 104 μm-K. 

 

By differentiating Eq. 4 and equating to 0, the wavelength corresponding to the 

maximum of the distribution can be obtained and is equal to λmaxT = 2897.8 μm-K. This 

is known as Wien’s displacement law. Figure 1 shows the spectral radiation distribution 

for blackbody radiation at three temperature sources. The curves have been obtained 

by using the Planck’s equation. 



 

Figure 1. Spectral distribution of blackbody radiation 

 

The total emissive power, Eb, and the monochromatic emissive power, Ebλ, of a 

blackbody are related by 

(eq. 5) 

 

Substituting Eq. (4) into Eq. (5) and performing the integration results in the Stefan-

Boltzmann law: 

(eq. 6) 

 

where α = the Stefan-Boltzmann constant = 5.6697 x 10-8 W/m2-K4. 

In many cases, it is necessary to know the amount of radiation emitted by a blackbody 

in a specific wavelength band λ1 → λ2. We get; 

(eq. 7) 

 

which results in Eb(0 → λ1T) - Eb (0 → λ2T). Table 2.4 presents a tabulation of Eb(0 → 

λT) as a fraction of the total emissive power, Eb = σT4, for various values of λT. 

 



A blackbody is also a perfect diffuse emitter, so its intensity of radiation, Ib, is a constant 

in all directions, given by 

(eq. 8) 

 

Real surfaces emit less energy than corresponding blackbodies. The ratio of the total 

emissive power, E, of a real surface to the total emissive power, Eb, of a blackbody, 

both at the same temperature, is called the emissivity (ε) of a real surface; that is; 

(eq. 9) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 1. Fraction of Blackbody Radiation as a Function of λT 

 
 
To express the dependence on wavelength, the monochromatic or spectral emissivity, 

ελ, is defined as the ratio of the monochromatic emissive power, Eλ, of a real surface 



to the monochromatic emissive power, Ebλ, of a blackbody, both at the same 

wavelength and temperature: 

(eq. 10) 

 

Kirchoff’s law of radiation states that, for any surface in thermal equilibrium, 

monochromatic emissivity is equal to monochromatic absorptivity: 

(eq. 11) 

 

Equation (11) can be generalized as 

(eq. 12) 

 

Similar to Eq. (2.37) for a real surface, the radiant energy leaving the surface includes 

its original emission and any reflected rays. The rate of total radiant energy leaving a 

surface per unit surface area is called the radiosity (J), given by 

(eq. 13) 

where 

Eb = blackbody emissive power per unit surface area (W/m2). 

H = irradiation incident on the surface per unit surface area (W/m2). 

ε = emissivity of the surface. 

ρ = reflectivity of the surface. 

 

A real surface is both a diffuse emitter and a diffuse reflector and hence, it has diffuse 

radiosity; i.e., the intensity of radiation from this surface (I) is constant in all directions. 

Therefore, the following equation is used for a real surface: 

 

(eq. 14) 

 

 

 

 



Transparent Plates 

 

When a beam of radiation strikes the surface of a transparent plate at angle θ1, called 

the incidence angle, as shown in Figure 2, part of the incident radiation is reflected and 

the remainder is refracted, or bent, to angle θ2, called the refraction angle, as it passes 

through the interface. Angle θ1 is also equal to the angle at which the beam is 

specularly reflected from the surface. Angles θ1 and θ2 are not equal when the density 

of the plane is different from that of the medium through which the radiation travels. 

Additionally, refraction causes the transmitted beam to be bent toward the 

perpendicular to the surface of higher density. The two angles are related by the Snell’s 

law: 

(eq. 15) 

 

where n1 and n2 are the refraction indices and n is the ratio of refraction index for the 

two media forming the interface. The refraction index is the determining factor for the 

reflection losses at the interface. A typical value of the refraction index is 1.000 for air, 

1.526 for glass, and 1.33 for water. 

 

 

Figure 2. Incident and refraction angles for a beam passing from a medium with 

refraction index n1 to a medium with refraction index n2. 

 

 



Expressions for perpendicular and parallel components of radiation for smooth 

surfaces were derived by Fresnel as 

(eq. 16) 

(eq. 17) 

Equation (16) represents the perpendicular component of unpolarized radiation and 

Eq. (17) represents the parallel one. It should be noted that parallel and perpendicular 

refer to the plane defined by the incident beam and the surface normal. 

Properties are evaluated by calculating the average of these two components as 

(eq. 18) 

Similarly, the transmittance, τr (subscript r indicates that only reflection losses are 

considered), can be calculated from the average transmittance of the two components 

as follows: 

(eq. 19) 

For a glazing system of N covers of the same material, it can be proven that 

(eq. 20) 

The transmittance, τa (subscript α indicates that only absorption losses are 

considered), can be calculated from 

(eq. 21) 

where K is the extinction coefficient, which can vary from 4 m-1 (low-quality glass) to 

32 m-1 (high-quality glass), and L is the thickness of the glass cover. 

 

The transmittance, reflectance, and absorptance of a single cover (by considering both 

reflection and absorption losses) are given by the following expressions. These 



expressions are for the perpendicular components of polarization, although the same 

relations can be used for the parallel components: 

(eq. 22) 

(eq. 23) 

(eq. 24) 

Since, for practical collector covers, τα is seldom less than 0.9 and r is on the order of 

0.1, the transmittance of a single cover becomes 

(eq. 25) 

The absorptance of a cover can be approximated by neglecting the last term of Eq. 

(24): 

(eq. 26) 

and the reflectance of a single cover could be found (keeping in mind that ρ = 1 - α - τ) 

as 

(eq. 27) 

For a two-cover system of not necessarily same materials, the following equation can 

be obtained (subscript 1 refers to the outer cover and 2 to the inner one): 

 

(eq. 28) 

(eq. 29) 

 

 

 



Thermal Analyses of Flat Plate Collectors 

A flat surface absorbs beam (GBt), diffuse (GDt), and ground-reflected (GGt) 

solar radiation; that is, 

(eq. 1) 

the beam radiation on a tilted surface is  

 

(eq. 2) 

and on a horizontal surface, 

 (eq. 3) 

where 

GBt = beam radiation on a tilted surface (W/m2). 

GB = beam radiation on a horizontal surface (W/m2). 

It follows that; 

(eq. 4) 

where RB is called the beam radiation tilt factor. 

So the beam radiation component for any surface is 

(eq. 5) 

 

 

 

Figure 1. Beam radiation on horizontal and tilted surfaces. 

 

Many models give the solar radiation on a tilted surface. The first one is the isotropic sky model 

developed originally by Hottel and Woertz (1942) and refined by Liu and Jordan (1960). 

According to this model, radiation is calculated as follows. 

Diffuse radiation on a horizontal surface, 



(eq. 6) 

 

where GR = diffuse sky radiance (W/m2-rad). 

 

Diffuse radiation on a tilted surface, 

(eq. 7) 

 

where β is the surface tilt angle as shown in figure 1. 

From Eq.6, the second term of Eq. 7 becomes GR = GD/2. 

Therefore, Eq. 7 becomes 

 

(eq. 8) 

 

Similarly, the ground-reflected radiation is obtained by ρG(GB = GD), where ρG is ground albedo. 

Therefore, GGt is obtained as follows. 

Ground-reflected radiation, 

(eq. 9) 

 

where Gr is the isotropic ground-reflected radiance (W/m2-rad). 

Ground-reflected radiation on tilted surfaces, 

(eq. 10) 

Combining Eq. 9 and 10 as before, 

(eq. 11) 

 



Therefore, inserting Eqs. 8 and 11 into Eq. 1, we get 

(eq. 12) 

The total radiation on a horizontal surface, G, is the sum of horizontal beam and diffuse 

radiation; that is, 

(eq. 13) 

Therefore, Eq. 12 can also be written as 

(eq. 14) 

 

where R is called the total radiation tilt factor. 

 

Using the isotropic model; 

 

Eq. 12 can be modified to give the absorbed radiation, S, by multiplying each term with the 

appropriate transmittance-absorptance product as follows: 

(eq. 15) 

where the terms [1 + cos(β)]/2 and [1 – cos(β)]/2 are the view factors from the collector to the 

sky and from the collector to the ground, respectively. 

 

The combination of cover with the absorber plate is shown in Figure 2, together with a ray 

tracing of the radiation. As can be seen, of the incident energy falling on the collector, τα is 

absorbed by the absorber plate and (1 - α)τ is reflected back to the glass cover. The reflection 

from the absorber plate is assumed to be diffuse, so the fraction (1 - α)τ that strikes the glass 

cover is diffuse radiation and (1 - α)τρD is reflected back to the absorber plate. The multiple 

reflection of diffuse radiation continues so that the fraction of the incident solar energy 

ultimately absorbed is 



(eq. 16) 

 

Typical values of (τα) are 0.7–0.75 for window glass and 0.9–0.85 for low-iron glass. A 

reasonable approximation of Eq. 16 for most practical solar collectors is 

(eq. 17) 

 

 

Figure 2. Radiation transfer between the glass cover and absorber plate. 

 

The reflectance of the glass cover for diffuse radiation incident from the absorber plate, ρD, can 

be estimated as the difference between τα and τ at an angle of 60°. For single covers, the 

following values can be used for ρD: 

 

 

 

For a given collector tilt angle, β, the following empirical relations, derived by Brandemuehl 

and Beckman (1980), can be used to find the effective incidence angle for diffuse radiation 

from sky, θe,D, and ground-reflected radiation, θe,G: 

(eq. 18a-b) 

where β = collector slope angle in degrees. 



The angle dependent absorptance from 0 to 80° can be obtained from (Beckman et al., 1977): 

(eq.19) 

where 

θe = effective incidence angle (degrees). 

θn = absorptance at normal incident angle, which can be found from the properties of the 

absorber. 

 

 

Figure 3. Typical (τα)/(τα)n curves for one to four glass covers. 

 

Subsequently, Eq. 16 can be used to find (τα)D and (τα)G. The incidence angle, θ of the beam 

radiation required to estimate RB can be used to find (τα)B. 

Alternatively, (τα)n can be found from the properties of the cover and absorber materials, and 

Figure 3 can be used at the appropriate angle of incidence for each radiation component to 

find the three transmittance-absorptance products. 



When measurements of incident solar radiation (It) are available, instead of Eq. 15, the 

following relation can be used: 

(eq. 20) 

where (τα)av can be obtained from 

(eq. 21) 

 

PROBLEM SETS 

 

Problem 1: A glass with transmissivity of 0.92 is used in a certain application for 

wavelengths 0.3 and 3.0 μm. The glass is opaque to all other wavelengths. Assuming 

that the sun is a blackbody at 5760 K and neglecting atmospheric attenuation, 

determine the percent of incident solar energy transmitted through the glass. If the 

interior of the application is assumed to be a blackbody at 373 K, determine the percent 

of radiation emitted from the interior and transmitted out through the glass. 

 

Solution 1: 

For the incoming solar radiation at 5760 K, we have 

 

From Table 1by interpolation, we get 

 

Therefore, the percent of solar radiation incident on the glass in the wavelength range 

0.3–3 μm is 

 

In addition, the percentage of radiation transmitted through the glass is 0.92 x 94.61 = 

87.04%. 

For the outgoing infrared radiation at 373 K, we have 



 

From Table 1, we get 

 

 

The percent of outgoing infrared radiation incident on the glass in the wavelength 0.3–

3 μm is 0.1%, and the percent of this radiation transmitted out through the glass is only 

0.92 x 0.1 = 0.092%. This example, in fact, demonstrates the principle of the 

greenhouse effect; i.e., once the solar energy is absorbed by the interior objects, it is 

effectively trapped. 

 

Problem 2: For a clear winter day, IB = 1.42 MJ/m2 and ID = 0.39 MJ/m2. Ground 

reflectance is 0.5, incidence angle is 23°, and RB = 2.21. Calculate the absorbed solar 

radiation by a collector having a glass with KL = 0.037, the absorptance of the plate at 

normal incidence, αn = 0.91, and the refraction index of glass is 1.526. The collector 

slope is 60°. (Given: for the beam radiation 23°, τα = 0.962, τr = 0.916, τ = τα x τr; for 

the diffuse radiation at 57°, τα = 0.957, τr = 0.858, τ = τα x τr and for the ground reflected 

radiation 23°, τα = 0.955, τr = 0.792, τ = τα x τr ) 

 

Solution 2: 

Using Eq. 19 for the beam radiation at θ = 23°, 

 

 

From eq. 17 

 



From Eq. 18a, the effective incidence angle for diffuse radiation is 

 

Using Eq. 19 for the beam radiation at θ = 57°, α/αn = 0.949 

 

From eq. 17,  

 

From Eq. (3.4b), the effective incidence angle for ground reflected radiation is 

 

Using Eq. 19 for the ground reflected radiation at θ = 65°, α/αn = 0.897 

 

From eq. 17 

 

In different way from eq. 17 

From the figure 3, for the beam radiation at θ = 23°; 

 and   

From the figure 3, for diffuse radiation at θ = 57°; 

 and  

From the figure 3, for ground-reflected radiation at θ = 65°; 

  and  

All these values are very similar to the previously found values, but the effor required 

is much less. 

Finally, the absorbed solar radiation is obtained from Eq. 15: 

 



 

 

Photovoltaic (PV) Cells 

PVs or solar cells convert sunlight directly into electricity. When photons strike certain 

semiconductor materials, such as silicon, they dislodge electrons, which causes a 

potential difference to form between the specially treated front surface of the solar cells 

and the back surface. In order to increase the voltage, individual cells are combined in 

a panel form. The most advanced photon utilization technology is the solar cell to which 

the PV effects of semiconductors are applied. 

Solar cells are the standard-bearer of the new energy technologies because of their 

great potential. Their successful development is dependent on cost reduction of the 

power-generating systems that include SCs. 

 

Photovoltaic cells consist of a junction between two thin layers (positive, p, and 

negative, n) of dissimilar semiconducting materials. When a valance electron of an 

atom absorbs a photon of light, the energy of the electron is increased by the amount 

of energy of the photon. If the energy of the photon is equal to or more than the band 

gap of the semiconductor, the electron with the excess energy will jump into the 

conduction band where it can move freely. Figure 1. Shows the PV device 

schematically. These solar cell contains a junction of a p-type and an n-type 

semiconductor (a p-n junction). 

 



 

Figure 1. Simple PV cell and resistive load 

 

The thickness of the n-type layer in a typical crystalline silicon cell is about 0.5 μm, 

whereas that of the p-type layer is about 0.25 mm. Thermal radiation is in fact an 

electromagnetic wave that travels at the speed of light (C = 300,000 km/s in a vacuum). 

This speed is related to the wavelength (λ) and frequency (ν) of the radiation as given 

by the equation: 

(Eq. 1) 

 

The energy contained in a photon, Ep, is given by 

 

(Eq. 2) 

where 

h = Planck’s constant, = 6.625 x 10-34 J-s. 

ν = frequency (s-1). 

Combining Eq. 1 with Eq. 2, we get 

(Eq. 3) 

 



Silicon has a band gab of 1.11 eV (1 eV = 1.6 x 10-19 J); therefore, by using Eq. 3, it 

can be found that photons with wavelength of 1.12 μm or less are useful in creating 

electron-hole pairs and thus electricity. The number of photons, np, incident on a cell 

can be estimated from the intensity of light, Ip: 

(Eq. 4) 

 

When solar energy (photons) hits the solar cell, electrons are knocked loose from the 

atoms in the semiconductor material, creating electron-hole pairs. If electrical 

conductors are attached to the positive and negative sides, forming an electrical circuit, 

the electrons are captured in the form of electric current, called photocurrent, Iph. 

During darkness the solar cell is not active and works as a diode, i.e., a p-n junction 

that does not produce any current or voltage. If, however, it is connected to an external, 

large voltage supply, it generates a current, called the diode or dark current, ID. A solar 

cell is usually represented by an electrical equivalent one-diode model, shown in Figure 

2.  

 

Figure 2. Single solar cell model. 

 

As shown in Figure 2, the model contains a current source, Iph, one diode, and a series 

resistance RS, which represents the resistance inside each cell. The diode has also 

an internal shunt resistance, as shown in Figure 2. The net current is the difference 

between the photocurrent, Iph, and the normal diode current, ID, given by 

 

(Eq. 5) 

 



It should be noted that the shunt resistance is usually much bigger than a load 

resistance, whereas the series resistance is much smaller than a load resistance, so 

that less power is dissipated internally within the cell. Therefore, by ignoring these two 

resistances, the net current is the difference between the photocurrent, Iph, and the 

normal diode current, ID, given by 

(Eq. 6) 

where 

k = Boltzmann’s gas constant, = 1.381 x 10-23 J/K. 

TC = absolute temperature of the cell (K). 

e = electronic charge, = 1.602 x 10-19 J/V. 

V = voltage imposed across the cell (V). 

Io = dark saturation current, which depends strongly on temperature (A). 

 

Figure 3 shows the I-V characteristic curve of a solar sell for a certain irradiance (Gt) 

at a fixed cell temperature, TC. The current from a PV cell depends on the external 

voltage applied and the amount of sunlight on the cell. When the cell is short-circuited, 

the current is at maximum (short-circuit current, Isc), and the voltage across the cell is 

0. When the PV cell circuit is open, with the leads not making a circuit, the voltage is 

at its maximum (open-circuit voltage, Voc), and the current is 0. In either case, at open 

circuit or short circuit, the power (current times voltage) is 0. Between open circuit and 

short circuit, the power output is greater than 0. 

 

Figure 3. Representative current-voltage curve for photovoltaic cells. 

 



The load characteristic is a straight line with a slope 1/V = 1/R. If the load resistance is 

small, the cell operates in the region AB of the curve, where the cell behaves as a 

constant current source, almost equal to the short-circuit current. On the other hand, if 

the load resistance is large, the cell operates on the region DE of the curve, where the 

cell behaves more as a constant voltage source, almost equal to the open circuit 

voltage. The power can be calculated by the product of the current and voltage. If this 

exercise is performed and plotted on the same axes, then Figure 4 can be obtained. 

 

Figure 4. Representative power-voltage curve for photovoltaic cells. 

The maximum power passes from a maximum power point (point C on Figure 3), at 

which point the load resistance is optimum, Ropt, and the power dissipated in the 

resistive load is maximum and given by 

(Eq. 7) 

 

Point C on Figure 3 is also called the maximum power point, which is the operating 

point Pmax, Imax, Vmax at which the output power is maximized. Given Pmax, an additional 

parameter, called the fill factor, FF, can be calculated such that 

(Eq. 8) 

Or 

(Eq. 9) 

 

The fill factor is a measure of the real I-V characteristic. For good cells, its value is 

greater than 0.7. The fill factor decreases as the cell temperature increases. 



Thus, by illuminating and loading a PV cell so that the voltage equals the PV cell’s 

Vmax, the output power is maximized. The cell can be loaded using resistive loads, 

electronic loads, or batteries. Typical parameters of a single-crystal solar cell are 

current density Isc = 32 mA/cm2, Voc = 0.58 V, Vmax = 0.47 V, FF = 0.72, and Pmax = 

2273 mW. 

 

Other fundamental parameters that can be obtained from Figure 3 are the short-circuit 

current and the open circuit voltage. The short-circuit current, Isc, is the higher value of 

the current generated by the cell and is obtained under short-circuit conditions, i.e., V 

= 0, and is equal to Iph. The open circuit voltage corresponds to the voltage drop across 

the diode when it is traversed by the photocurrent, Iph, which is equal to ID, when the 

generated current is I = 0. This is the voltage of the cell during nighttime and can be 

obtained from Eq. 6: 

 

(Eq. 10) 

 

which can be solved for Voc: 

(Eq. 11) 

 

where Vt = thermal voltage (V) given by 

(Eq. 12) 

 

The output power, P, from a photovoltaic cell is given by 

(Eq. 13) 

 

The output power depends also on the load resistance, R; and by considering that V = 

IR, it gives 

(Eq. 14) 

 



Substituting Eq. 6 into Eq. 13 gives 

(Eq. 15) 

 

Equation 15 can be differentiated with respect to V. By setting the derivative equal to 

0, the external voltage, Vmax, that gives the maximum cell output power can be 

obtained: 

(Eq. 16) 

This is an explicit equation of the voltage Vmax, which maximizes the power in terms of 

the short-circuit current (Isc = Iph), the dark saturation current (Io), and the absolute cell 

temperature, TC. If the values of these three parameters are known, then Vmax can be 

obtained from Eq. 16 by trial and error. 

The load current, Imax, which maximizes the output power, can be found by substituting 

Eq. 16 into Eq. 6: 

(Eq. 17) 

which gives 

(Eq. 18) 

By using Eq. 7, 

(Eq. 19) 

 

Efficiency is another measure of PV cells that is sometimes reported. Efficiency is 

defined as the maximum electrical power output divided by the incident light power. 

Another parameter of interest is the maximum efficiency, which is the ratio between 

the maximum power and the incident light power, given by 

 



(Eq. 20) 

where A = cell area (m2). 

 

PROBLEM SETS 

Problem 1: If the dark saturation current of a solar cell is 1.7 x 10-8 A/m2, the cell 

temperature is 27°C, and the short-circuit current density is 250 A/m2, calculate the 

open circuit voltage, Voc; voltage at maximum power, Vmax; current density at maximum 

power, Imax; maximum power, Pmax; and maximum efficiency, ηmax. What cell area is 

required to get an output of 20 W when the available solar radiation is 820 W/m2? 

 

Solution 1: 

 

First the value of e/kTC is evaluated, which is used in many relations: 

 

 

Using Eq. 11, 

 

 

Voltage at maximum power can be found from Eq. 16 by trial and error: 

 

 

or 

 

which gives Vmax = 0.47 V. 

 

The current density at maximum power point can be estimated from Eq. 18: 



 

 

Maximum power, Pmax, is obtained from Eq. 7: 

 

 

 

Maximum efficiency, ηmax, is obtained from Eq. 20: 

 

Finally, the cell area required to get an output of 20 W is 
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