FDE206 Reaction Kinetics in Food Engineering Faculty: Mehmet Özkan Teaching Assistant: Fatmagül Hamzaoğlu

Phone: 203 3300/3621

e-mail: <u>ozkanm64@gmail.com</u> mozkan@ankara.edu.tr fatma-gul1990@hotmail.com Office hours: Friday, 10:00–12:00

Purpose of class

Define the important reactions for the quality of foods during processing and storage.

Determine the changes of this important reaction during either processing and storage at a certain temperature applying analytical methods in lab.

Use the appropriate kinetic models.

Calculate the kinetic parameters such reactions (*k*, t_{1/2} and D values), which show the stability of m.o.'s, enzymes and quality factors.

Calculatee kinetic parameters such reactions (E_a, z and Q₁₀ values), which show the effect of temperature on the inactivation/degradation of m.o.'s, enzymes and quality factors. Calculate the shelf-life of foods using the calculated kinetic parameters.

Class programme

- Ist week :: Reactions affecting the quality of foods during processing
- 2nd week: Graphical presentation of experimental data, constructing of arithmetic graphs (determination of slope)
- Srd week: Graphical presentation of experimental data, constructing of semi-log graphs (determination of slope)
- 4th week: Calculation of linear regression for arithmetic and semi-logarithmic equations

- 5th week: Reaction rates, Order of reactions in foods (zero-, first- and secondorders)
- 6th week: Calculate the k value for zeroorder reactions
- 7th week: Calculate the k values for firstand second-order reactions
- 8th week: Midterm
- 9th week: Calculate the t_{1/2} and D values for first-order reactions

- 10th week: Collision theory
- 11th week: Factors affecting reaction rates in foods
- 12th week: Activation energy (E_a) and Q₁₀ values
- 13th week: Calculation of E_a and Q₁₀ values for important reactions in foods
- 14th week: Calculation of shelf life in various foods

Suggested readings

 Toledo RT. 1994. *Fundamentals of Food Process Engineering*. 2nd ed., Chapman & Hall, New York, N.Y., U.S.A.

> **Chapter 1**: Review of mathematical principles and applications in food processing, p.1-50.

Chapter 8: Kinetics of chemical reactions in foods, p 302-314.

2) Earle R, Earle M. 2003. Fundamentals of Food Reaction Technology. 2nd ed., Leatherhead Food International, United Kingdom. Özkan M, Cemeroğlu B, Kırca Toklucu
 A. 2010. *Gıda Mühendisliğinde Reaksiyon Kinetiği*. Bizim Grup
 Basımevi, Ankara.

Food processing

raw material

Processing (pasteurization and sterilization)

Purposes of food processing

- To produce products safer, more attractive and easier to eat,
- To build desirable constituents (formation of lactic acid in pickle fermentation) and removes undesirable ones (oxygen, causing oxidation of ascorbic acid and lipids)
- To encourage enzymes to develop desirable flavors and color (PPO, oxidizing the phenolics in black tea production)

- ➢ To inhibite enzymes causing undesirable changes (PPO and pectolytic enzymes in fruit juice production)
- ➤To grow m.o.'s to create desirable flavor (yogurt production),
- To destroye m.o.'s to prevent harm to the consumer (pasteurization of juices, sterilization of canned vegetables, meat and fish).

Food processing

> Aims to preserve foods for a long time,

≻ How?

Apply various methods, such as heat processing (pasteurization and sterilization)

Heat processing;

- Primary purpose in to inactivate the pathogen and/or spoliage m.o.'s causing the spoilage of foods stored at commonly used storage temperatures
- Inactivate enzymes causing the loss of quality of foods (such as lipase and lypoxygenase).

Heat processing

depending on the temperature and time, important losses of foods occur in;

- Sensorial properties (losing aroma)
- Nutritional value (losing ascorbic acid and thiamine)
- Choose <u>HTST</u> to minimize the quality losses.

Table 1 Changes in food materials during processing

- Chemical: Hydrolysis (sucrose), oxidation, polymerization (starch, cellulose and pectin), denaturation, browning
- **Physical:** Gelation (freezing of gelatine), hardening (ice-cream), softening (ripening pf fruits), color loss/gain
- **Biological:** Growth and death of microorganisms, glycolysis, physiological changes during ripening (ethylene and CO₂ production, chlorophyll degradation)

• Nutritional: Loss of vitamins and amino acids

• **Sensorial:** Aroma and flavor loss, texture changes, color bleaching and darkening

Reaction	Typical sensorial changes	Typical nutritional Constituent loss	Environmental factor affecting these reactions
▲ Non-enzymatic browning	 Loss of dissolution of proteins Browning Stale and cooked type of off-flavor 	 Loss of some essential amino acids Loss of ascorbic acid 	• Temperature, water activity and composition of gaseous in packaging
▲ Lipid oxidation	 Rise in fat viscosity Rancid off-flavor Browning 	 Loss of A and E vitamins Loss of essential fatty acids 	• Temperature and water activity
▲ Forming of cross-links in polymers such as proteins and polysaccharides	 Hardening in texture Loss in water holding capacity 	• Loss of protein digestion	• Temperature, water activity and composition of gaseous in packaging
▲ Enzymatic changes in fruits and vegetables stored at refrigerated temperatures	Off-flavor formation	• Loss of vitamins	• Temperature, water activity and composition of gaseous in 18 packaging

Changes in foods can be measured through

Chemical analysis

Phyisical analysis

Microbiological analysis

Sensorial analysis

Shelf-life (End point of food)

Time that a food lasts as an **acceptable and safe** during storage, distribution and home.

(Food is no longer to be consumed due to loss of <u>quality</u> or <u>safety</u>)

Shelf-life determination

- $\sqrt{\text{Determine } \frac{\text{the critical product attributes}}{\text{their acceptable levels}}}$ and
- $\sqrt{1}$ Find out the reactions causing these changes
- $\sqrt{\text{Determine the changes of product attribute}}$ with time (<u>Process</u> or <u>store</u> the food at a <u>certain temperature</u>)
- $\sqrt{\text{Calculate the rate of this reaction at this temperature (Determine the <u>Slope</u>!)}$

Quantitative data obtained from the lab measurements are fitted to mathematical equations. (y = ax + b)

These equations are used to predict changes (or to determine shelf life) during processing and storage.

Identify the critical attributes of orange juice

- ??????
- ??????

Identify the critical attributes of orange juice

- Aroma and flavor (depends on temp., O₂ and rind-oil)
- Inactivation of pectin methyl esterase
- Pathogenic microorganisms (5 log cyle)

- Ascorbic acid
- ➢ Browning
- Carotenoids

Which quality attribute should be chosen to determine the shelf-life of orange juice ?

Inactivate the pathogens by a factor of 5 log cycle

- Legal regulation requires that the packed orange juice must be subjected to a process sufficient to inactivate the pathogens in the finished product by a factor of 5 log cycles.
- To obtain this inactivation, either heat processing (pasteurization or sterilization) or non-thermal methods.

Factors affecting the reactions in foods

➢ Water activity,

Gas composition in packaging or storage.

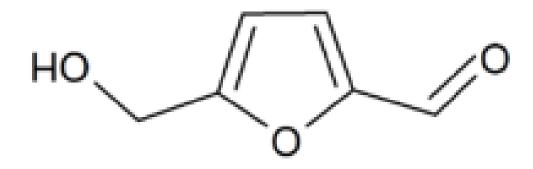
Storage variables affecting the shelf life of foods

Food materials	Environment	Packaging
Microbial quality	Temperature	Permeability
Pathogens, Spoilage bacteria, yeasts and molds	Water activity	water vapor, O_2 and CO_2
Composition	Gas composition	Light transmittance
Moisture, Acidity/pH,	Light	Product/packaging interaction
Salt content, Preservatives		28

Reaction kinetics

- Deals with the <u>reaction's mechanism</u> as well as the <u>rates</u> of chemical reactions.
- Investigates how different experimental conditions (temp. or a_w) can influence the rate (speed) of chemical reaction.
- Constructs mathematical models that can describe the characteristics of a chemical reaction.

In food science, reaction kinetic calculations are used to determine for:


- Degradation or formation of food constituents (vitamins, pigments, etc.)
- Inactivation or growth of m.o.'s
- Inactivation or activation of enzymes

Reaction mechanism

- To determine the rate of reaction, net reaction is important and intermediate products are mostly not taken into consideration.
- An intermediate is a compound that is produced from the preceding reactants and is then reacted with another reactant to form a final product.
- Life-time of intermediates are very short.

- Mostly, intermediates cannot be measured analytically and are not very important for reaction kinetic calculations.
- However, in some cases, the formation of intermediate products can be very important in foods. For example:
 - HMF (intermediate) formation indicates browning formation (final product)
 - ✓ Formation of HMF indicates that foods are exposed to high processing or storage temperature.

Hydroxymethyfurfural

Difference of reaction kinetics between chemical and food eng:

 <u>Chemical engineers</u> are interested in increasing the yield for the production of chemical compounds (product side)

Food engineers aim to preserve the quality (reactant side).