Linearization of Nonlinear Equations

- In some cases, it is not easily understood whether the equation is linear or not.
- In these cases, the equations are reorganized to resemble the equation of " $y=a x+b$." The example of this situation is given in Table 2.2.

Tablo 3 Linearization of some nonlinear equations ($\mathrm{y}=\mathrm{ax}+\mathrm{b}$)

Tablo 3 Linearization of some nonlinear equations

Nonlinear equation	Linear equation	y	x	Slope	Intercept
$y=\frac{1}{a}+b$	$y=a \frac{1}{x}+b$	y	$1 / x$	a	b
$y=\frac{1}{a x+b}$	$\frac{1}{y}=a(x)+b$	$1 / y$	x	a	b
$y=\frac{x}{a x+b}$	$\frac{x}{y}=a(x)+b$	x / y	x	a	b
$y=b x^{a}$	$\log y=a \log (x)+\log b$	$\log y$	$\log x$	a	$\log b$
$y=b a^{x}$	$\log y=\log a(x)+\log b$	$\log y$	x	$\log a$	$\log b$

Linear Regression

- Once the experimental data is plotted, some deviation from linearity usually occurs (not all data points are on the straight line

■ The question is: «where the straight line should pass?"
\checkmark 1) The answer would be:
«Freehand method of curve fitting»
\checkmark 2) The correct answer is:
Run «linear regression analysis.»

- Slope (a) and intercept (b) are calculated from the following statistical equations:

$$
\begin{aligned}
& \mathbf{a}=\frac{\Sigma x y-(\Sigma x \Sigma y / n)}{\left.\Sigma x^{2}-\left[(\Sigma x)^{2} / n\right)\right]} \\
& \mathbf{b}=\frac{\Sigma y \Sigma x^{2}-\Sigma x \Sigma x y}{\left.n\left(\Sigma x^{2}-\left[(\Sigma x)^{2} / n\right)\right]\right)}
\end{aligned}
$$

- Linear regression analysis has two purposes:
$>$ To determine the equation of straight line (regression equation).
> To determine if a relation exists between dependent (y) and independent (x) variables (calculate «lı or «냘»).

Correlation coefficient (r)

- Shows whether or not there is a relationship between two dependent (y) variables.

Example: phenolic content vs antioxidant activity. (The higher the phenolic content of foods, the higher the antioxidant activity of foods)

$n \Sigma x y-\Sigma x \Sigma y$

$$
r=\overline{\left[\left[n \Sigma x^{2}-(\Sigma x)^{2}\right]\left[n \Sigma y^{2}-(\Sigma y)^{2}\right]\right]^{1 / 2}}
$$

- Relationship between x and y can be increasing or decreasing.
- "r" is the same sign as slope.
- Values of "r" change from $\underline{\mathbf{0}}$ to $\underline{1 .}$
- «r» value should be reported as at least three digits (such as, $r=0.975$).
- If straight line passes from all data points, then «r» will be equal to 1 .
- If data points deviate from straight line, then «r» will be less than 1.

■ If «r» value is over 0.8, then relationship between «x» and «y» are good;

- If «r» value is lower than 0.5, then relationship between «x» and «y» is poor.

Determination coefficient ($\mathbf{R}^{\mathbf{2}}$)

- Shows whether or not there is a relationship between independent (\mathbf{x}) and dependent (y) variables.

Example: phenolic content vs storage time (As the storage time increases, the phenolic content of food decreases)

- Best way to test whether experimental data fits regression equation ($\mathbf{y}=\mathbf{a x}+\mathbf{b}$) is to determine R^{2}. (measurement of straight line)
- If R^{2} is equal to 1 , this proves that experimental data fits perfectly to regression equation. (all data points are on the straight line)
- The more the experimental data points, the higher the confidence to R^{2}.
$\square R^{2}$ is also used to decide reaction order for a quality factor in question (or intrest).
- R^{2} is calculated using the following equation.

$$
R^{2}=1-\frac{\Sigma(Y i-\hat{Y})^{2}}{\Sigma(Y i-\tilde{Y})^{2}}
$$

where;
Y_{i} : Experimental data,
\hat{Y} : Data calculated from regression equation (corrected y values),
\tilde{Y} : Mean value of experimental data.

- Example 2.5: By using the same experimental data in Example 2.1 for ascorbic acid degradation;
a) Find out regression coefficients (a and b) and \mathbf{R}^{2} by "linear regression method."
a) Draw the straight line using regression equation.

Table 2.1 Ascorbic acid contents of orange juice stored at $30^{\circ} \mathrm{C}$

Time (days) Ascorbic acid conc.

$$
\left(\mathrm{mg} \mathrm{~L}^{-1}\right)
$$

2 457

4 305

5
251
6
148

$$
\begin{aligned}
& \mathbf{a}=\frac{\Sigma x y-(\Sigma x \Sigma y / n)}{\left.\Sigma x^{2}-\left[(\Sigma x)^{2} / n\right)\right]} \\
& \mathbf{b}=\frac{\Sigma y \Sigma x^{2}-\Sigma x \Sigma x y}{\left.n\left(\Sigma x^{2}-\left[(\Sigma x)^{2} / n\right)\right]\right)}
\end{aligned}
$$

Table 2.4 Regression data

X	X	Y	Y	$X Y$
2		457		
4		305		
5		251		
6		148		
$\Sigma X=$	$\Sigma X^{2}=$	$\Sigma Y=$	$\Sigma Y^{2}=$	$\Sigma X Y=$

Table 2.4 Regression data

X	X^{2}	Y	Y^{2}	$X Y$
2	4	457	208849	914
4	16	305	93025	1220
5	25	251	63001	1255
6	36	148	21904	888
$\sum X=17$	$\sum X^{2}=81$	$\sum Y=1161$	$\sum Y^{2}=$ 386779	$\sum Y=$ 4277 19

$\Sigma X=17 ; \quad \Sigma X^{2}=81 ; \quad \Sigma Y=1161$ $\Sigma Y^{2}=386779 ; \quad \Sigma X Y=4277$

$$
\begin{aligned}
& \mathbf{a}=\frac{\Sigma x y-(\Sigma x \Sigma y / n)}{\left.\Sigma x^{2}-\left[(\Sigma x)^{2} / n\right)\right]} \\
& \mathbf{b}=\frac{\Sigma y \Sigma x^{2}-\Sigma x \Sigma x y}{\left.n\left(\Sigma x^{2}-\left[(\Sigma x)^{2} / n\right)\right]\right)}
\end{aligned}
$$

$a=-75.11 \mathrm{mg}^{-1}$ day $^{-1}$

$b=609.49 \mathrm{mg} \mathrm{L}^{-1}$

$$
\mathbf{R}^{2}=1-\frac{\Sigma(Y i-\hat{Y})^{2}}{\Sigma(Y i-\tilde{Y})^{2}}
$$

where;
Y_{i} : Experimental data,
\hat{Y} : Data calculated from regression equation,
\tilde{Y} : Mean value of experimental data

Calculation of \mathbf{R}^{2}

Place storage periods (x) in regression equation and calculate the "corrected y " values.

$$
y=-75.11 x+609.49
$$

$$
\begin{array}{rl}
y=-75.11 & x+609.49 \\
& x=2 \rightarrow \hat{Y}=459.27(y=457) \\
& x=4 \rightarrow \hat{Y}=309.05(y=305) \\
& x=5 \rightarrow \hat{Y}=233.94(y=251) \\
& x=6 \rightarrow \hat{Y}=158.83(y=148)
\end{array}
$$

If «x» vs «Ŷ» are plotted on arithmetic scaled graph paper, then all data points will be on the straight line.

■ Place «corrected y » values in R^{2} equation.

$$
\begin{aligned}
& \mathrm{R}^{2}=1-\frac{\left[(457-459.27)^{2}+(305-309.05)^{2}+(251-233.94)^{2}+(148-158.83)^{2}\right]}{\left[(457-290.25)^{2}+(305-290.25)^{2}+(251-290.25)^{2}+(148-290.25)^{2}\right]} \\
& \mathrm{R}^{2}=1-\frac{429.8879}{49798.7275} \\
& \mathrm{R}^{2}=0.9914
\end{aligned}
$$

■ Interpretation: R^{2} value of 0.9914 (very close to 1) indicates experimental data was perfectly fitted to straight line.

Figure 2.5 Plotting original experimental data

Plotting the regression line

- To plot the regression line, we do not need to calculate all «corrected y values.»
- Two «corrected y» values (generally the "highest" and "lowest") are calculated by placing the corresponding «x» values in regression equation.

$$
\begin{aligned}
y=-75.11 & (x)+609.49 \\
x=2 & \rightarrow y_{\text {corrected }}=459.3 \\
x=6 & \rightarrow y_{\text {corrected }}=158.8
\end{aligned}
$$

- Place the calculated new coordinates $(\underline{2 ; 459})$ and $(\underline{6 ; 159})$ on graph.
- Connect these two data points.

Figure 2.6 Regression line

In graphical presentations

\checkmark Only original experimental data points are shown.
\checkmark Data points calculated from regression equation (corrected y values) are never shown in graph (not in the exam!!!!).

Example 2.6 (homework): Ascorbic acid degradation was studied in orange juice stored at various temperatures. Periodically, samples were drawn from storage and samples were analyzed for aa. AA contents of samples are presented in Table 2.6.
a) Calculate regression coefficients (a and b) and R^{2} by linear regression.
b) Plot the regression lines.

- Ascorbic acid degradation was studied in orange juice stored at various temperatures.
\checkmark What was the food product?
\checkmark What food constituent was studied in this research?
\checkmark Was this study «processing» or «storage»?
\checkmark How can you do this experiment?
\checkmark What was the purpose of this study?

Temperature $\left({ }^{\circ} \mathbf{C}\right)$	Storage time (\mathbf{h})	AA content $\left(\mathbf{m g ~ m L}^{\mathbf{1}}\right)$
23	20	0.948
	40	0.476
	60	0.004
35	5	1.029
	10	0.758
	20	$\mathbf{0 . 2 6 1}$
45	0	
	5	1.200
	$\mathbf{1 0}$	0.655
		0.109

- How many graphs are you going to draw? Justify your answer.

Solution

To calculate slopes, intercepts and determination coefficients at $23^{\circ}, 35^{\circ}$ and $45^{\circ} \mathrm{C}$, we first need to calculate the values for the regression equations.

Table 2.7 Data for regression analysis for the aa degradation in orange juice stored at $23^{\circ} \mathrm{C}$ $\begin{array}{lllll}\mathbf{X} & \mathbf{X}^{2} & \mathbf{Y} & \mathbf{Y}^{2} & \mathbf{X Y}\end{array}$ 20
0.948

40
0.476

60
0.004
$\Sigma \mathrm{X}=\quad \Sigma \mathrm{X}^{2}=\quad \Sigma \mathrm{Y}=\quad \Sigma \mathrm{Y}^{2}=\quad \Sigma \mathrm{XY}=$

Table 2.7 Data for regression analysis for the aa degradation in orange juice stored at $23^{\circ} \mathrm{C}$

\mathbf{X}	\mathbf{X}^{2}	\mathbf{Y}	$\mathbf{Y}^{\mathbf{2}}$	$\mathbf{X Y}$
20	400	0.948	0.898704	18.96
40	1600	0.476	0.226576	19.04
60	3600	0.004	0.000016	0.24
$\mathrm{XX}=$	$\Sigma \mathrm{X}^{2}=$	$\Sigma \mathrm{Y}=$	$\Sigma \mathrm{Y}^{2}=$	$\Sigma \mathrm{XY}=$
120	5600	1.428	1.125296	38.24
39				

Table 2.10 Regression coefficients for the aa degradation in orange juice stored at various temperatures.

Temperature $\left({ }^{\circ} \mathbf{C}\right)$	Slope (a) $\left(\mathbf{m g ~ m L} \mathbf{~}^{-1} \mathbf{h}^{-1}\right)$	Intercept (b) $\left(\mathbf{m g ~ m \mathbf { m } ^ { - 1 })}\right.$	$\mathbf{R}^{\mathbf{2}}$
23	-0.0236	1.4200	1
35	-0.0510	1.2775	0.9995
45	-0.1091	1.2002	1

Figure 2.7 Regression lines for aa

 degradation in orange juice stored at various temperatures.

Example 2.7

Formation of brown color as a result of nonenzymatic browning reactions was measured in dried apricots desulfrized at $50^{\circ} \mathrm{C}$. Brown color was spectrophotometrically determined by measuring absorbance values at 420 nm $\left(\mathrm{A}_{420}\right)$. Experimental data is presented in Table 2.11.

- Formation of brown color as a result of nonenzymatic browning reactions was measured in dried apricots desulfrized at $50^{\circ} \mathrm{C}$.
\checkmark What was the food product?
\checkmark What food constituent was studied in this research?
\checkmark Was this study «processing» or «storage»?
\checkmark How can you do this experiment?
\checkmark What was the purpose of this study? $\left(\mathrm{SO}_{2}\right.$ and browning)
> Calculate regression coefficients (slope and intercept) and « R^{2} » by linear regression.
> Plot the experimental data on arithmetic graph paper and draw the regression line.
> Calculate the brown color formation after 65 h desulfurization at $50^{\circ} \mathrm{C}$.
> Calculte the brown color formation after 180 h desulfurization at $50^{\circ} \mathrm{C}$.
> Analyse your results for 65 h or 180 h , which of your results is more reliable?

Table 2.11 The concentration of brown pigments formed in dried apricots after desulfirization at $50^{\circ} \mathrm{C}$

Time (h)	$\mathbf{A}_{420} \mathbf{g}^{\mathbf{- 1}}$ dried weight
0	0.144
24	0.161
48	0.171
72	0.196
96	0.213
120	0.233
144	0.255

Table 2.12 Data for regression analysis for the formation of brown colored pigments in dried apricots after desulphurization at $50^{\circ} \mathrm{C}$

\mathbf{X}	$\mathbf{X}^{\mathbf{2}}$	\mathbf{Y}	\mathbf{Y}	$\mathbf{X Y}$
0		0.144		
24		0.161		
48		0.171		
72		0.196		
96		0.213		
120		0.233		
$\mathbf{1 4 4}$		0.255		
$\mathbf{\Sigma X = ? ? ?}$	$\mathbf{\Sigma} \mathbf{X}^{\mathbf{2}}=? ? ?$	$\mathbf{\Sigma Y = ? ? ?}$	$\mathbf{\Sigma} \mathbf{Y}^{\mathbf{2}}=? ? ?$	$\mathbf{\Sigma X Y}=? ? ?$

Table 2.12 Data for regression analysis for the formation of brown colored pigments in dried apricots after desulphurization at $50^{\circ} \mathrm{C}$

\mathbf{X}	\mathbf{X}^{2}	\mathbf{Y}	$\mathbf{Y} \mathbf{Y}^{2}$	$\mathbf{X Y}$
0	0	0.144	0.021	0
24	576	0.161	0.026	3.864
48	2304	0.171	0.029	8.208
72	5184	0.196	0.038	14.112
96	9216	0.213	0.045	20.448
120	14400	0.233	0.054	27.960
144	20736	0.255	0.065	36.720
$\mathbf{X X}=504$	$\mathbf{\Sigma} \mathbf{X}^{2}=52416$	$\mathbf{\Sigma Y = 1 . 3 7 3}$	$\mathbf{\Sigma Y}{ }^{2}=0.279$	$\mathbf{\Sigma X Y}=$
			111.312	

Calculation of slope

$a=\left\lvert\,$| $111.312-(504)(1.373) / 7$ |
| :---: |
| $)$ |$=0.00077 A_{420} g^{-1} h^{-1}\right.$

Calculation of y-intercept

$b=\frac{(1.373)(52416)-(504)(111.312)}{7\left[52416-(504)^{2} / 7\right]}=0.1405 A_{420} g^{-1}$

Equation for brown color formation

$$
y=0.00077 x+0.1405
$$

Calculation of the "corrected y" values

$$
\begin{aligned}
y=0.00077(0)+0.1405 & \rightarrow y_{1}=0.141 \\
(24) & \rightarrow y_{2}=0.159 \\
(48) & \rightarrow y_{3}=0.177 \\
(72) & \rightarrow y_{4}=0.196 \\
(96) & \rightarrow y_{5}=0.214 \\
(120) & \rightarrow y_{6}=0.233 \\
(144) & \rightarrow y_{7}=0.251
\end{aligned}
$$

Calculation of $\mathbf{R}^{\mathbf{2}}$

$R^{2}=1-\left[\begin{array}{l}{\left[(0.144-0.141)^{2}+(0.161-0.159)^{2}+(0.171-0.177)^{2}+\right.} \\ (0.196-0.196)^{2}+(0.213-0.214)^{2}+(0.233-0.233)+(0.255 \\ -0.251)]\end{array}\right]\left[\begin{array}{l}{\left[(0.144-0.196)^{2}+(0.161-0.196)^{2}+(0.171-0.196)^{2}+\right.} \\ (0.196-0.196)^{2}+(0.213-0.196)^{2}+(0.233-0.196)+ \\ (0.255-0.196)]\end{array}\right.$
$R^{2}=1-0.004596$
$R^{2}=0.993$

Drawing the regression line

- Mark the experimental values in an arithmetic scaled graph paper.
- To draw the regression line:
$>$ Place the lowest and the highest experimental "x" values in regression equation and calculate the "corrected y" values.

$$
\begin{aligned}
y=0.00077(0)+0.1405 & \rightarrow y_{\text {corrected }}=0.141 \\
(144) & \rightarrow y_{\text {corrected }}=0.251
\end{aligned}
$$

$>$ Mark the " x " and "corrected y " values in graph paper.
> Connect the two points in graph to draw the straight line (regression line).

Figure 2.8 Regression line for formation of brown pigment during desulfurization of dried apricots at $50^{\circ} \mathrm{C}$

