Second order ($\mathbf{n}=2$) of reactions

- If only one reactant enters the reaction (monomolecular reaction), then the rate of the reaction is proportional to the second power of the concentration of the reactant.
- If two reactants enter the reaction (bimolecular reaction), then the rate of the reaction is proportional to the multiplication of the first power of the concentrations of these two reactants.

d A
 $\mathrm{V}=------=k_{2} A^{2}$ (monomolecular)
 d t

d A
$V=------=k_{2} A B$ (bimolecular)

$$
\frac{\mathrm{dA}}{\mathrm{~A}^{2}}=-\mathrm{k}_{2} \mathrm{dt}
$$

The following rule of integration (power rule) is used:

$$
\int \frac{d x}{x^{2}}=-\frac{1}{x}
$$

$$
\begin{aligned}
& \int_{-1 / \mathrm{A}_{0}}^{-1 / \mathrm{A}} \frac{\mathrm{dA}}{\mathrm{~A}^{2}}=-\mathrm{k}_{2} \int_{\mathrm{t}_{0}}^{\mathrm{t}} \mathrm{dt} \\
& -\frac{1}{\mathrm{~A}}-\left(-\frac{1}{\mathrm{~A}_{\mathrm{o}}}\right)=-\mathrm{k}_{2} \mathrm{t} \\
& \frac{1}{\mathrm{~A}}=\mathrm{k}_{2} t+\frac{1}{A_{o}}
\end{aligned}
$$

$$
\frac{1}{\mathrm{~A}}=\mathrm{k}_{2} t+\frac{1}{\mathrm{~A}_{\mathrm{o}}}
$$

- In second-order reactions, there is a linear relationship between the concentration (1/conc.) of the reactant or product with the time of the reaction. (in arithmetic graph paper)

$$
\frac{1}{\mathrm{~A}}=\mathrm{k}_{2} t+\frac{1}{\mathrm{~A}_{\mathrm{o}}}
$$

Where:
A: Concentration of reactant after t time, A_{0} : Initial concentration of reactant, k_{2} : Second order reaction rate constant. Unit: (concentration) ${ }^{-1}(\text { time })^{-1}$

Graphing Second-order Reactions

Examples for Second-Order Reactions

■ Limited number of reactions in foods follow second-order reaction kinetics.
Examples are:
■ Changes in amino acids during Maillard reaction. For example, lysine loss in milk during Maillard reaction.

- Tiamine loss in milk
- Ascorbic acid loss in baby foods and lemon juice.

■ Tiosulfanote loss (indicates loss of pungency) during drying and storage of onion rings.

Example 3.20

■ The loss of lysine (essential amino acid) is studied during the heating of milk at $160^{\circ} \mathrm{C}$. The results from this experiment are presented in Table 3.14.
Note: The unit of slope in an aritmetic paper for the degradation of lysine is found to be $\mathrm{L} /(\mathrm{mg} \mathrm{s})$.
a) Find out the reaction order for the thermal degradation of lysine.
b) Calculate the reaction rate constant for the degradation of lysine.

Tablo Lysine losses in milk heated at $160^{\circ} \mathrm{C}$

Time (s)	Lysine concentration $(\mathbf{m g ~ L}$
0	2.93
50	2.62
100	2.40
200	2.12
350	1.98
600	1.54
1000	1.01
1500	0.84
2000	0.62

Plotting data in arithmetic graph paper (conc. vs time)

Plotting data in semi-log graph paper (conc. vs. time)

Plotting data in aitmetic graph paper (1/conc. vs time)

Reaction order

- We found the straight line in arithmetic garph paper (1/conc. vs time). Therefore, the degradation of lysine during heating of milk at $160^{\circ} \mathrm{C}$ follows second order reaction kinetics.

Slope and reaction rate constant (from graph)

$$
1 / C_{2}-1 / C_{1}
$$

Slope $=---------------$

$$
t_{2}-t_{1}
$$

Slope $=\mathrm{k}_{2}=$????
Intercept = ?????

Regression data

\mathbf{X} (time)	$\mathbf{Y}(\mathbf{1 / l y s i n e} \mathbf{c o n})$	\mathbf{X}^{2}	$\mathbf{Y}^{\mathbf{2}}$	$\mathbf{X Y}$
0	0.341	0	0.116	0
50	0.382	2500	0.146	19.10
100	0.417			
200	0.472			
350	0.505			
600	0.649			
1000	0.990			
1500	1.190			
2000	1.613			
$\Sigma \mathrm{X}=5800$	$\Sigma \mathrm{Y}=6.559$	$\Sigma \mathrm{X}^{2}=7785000$	$\Sigma \mathrm{Y}^{2}=6.333$	$\Sigma \mathrm{XY}=6722.35$

Slope and intercept (from regression)

$$
\mathbf{a}=0.00062 \mathrm{~L} \mathrm{mg}^{-1} \mathrm{~s}^{-1}
$$

$$
\mathbf{b}(1 / b)=0.3314 \mathrm{~L} \mathrm{mg}^{-1}
$$

Reaction rate constant

Equation describing the reaction:

$$
\begin{aligned}
& \frac{1}{\mathrm{~A}}=\mathrm{k}_{2} t+\frac{1}{\mathrm{~A}_{\mathrm{o}}} \\
& \frac{1}{\mathrm{~A}}=0.00062 \mathrm{t}+0.3314
\end{aligned}
$$

Homework

Calculate the R^{2} at home!!!

(Answer: $\mathrm{R}^{2}=0.991$)

Example 3.21

- Color and pungency (acılık) are the most important quality criteria in dried onions and garlics. The loss of pungency in dehydrated onions is followed by the loss in thiosulfinate concentration. "American Dehydrated Onion and Garlic Association (ADOGA)" specifies that dehydrated onions should minimum contain thiosulfinate at " $5 \mu \mathrm{~mole} / \mathrm{g}$ " level. In a study, the thiosulfinate loss is studied in dried onions during storage at $20^{\circ} \mathrm{C}$. The initial thiosulfinate concentration was 13 $\mu \mathrm{mole} / \mathrm{g}$ and the reaction rate constant for the loss of thiosulfinate was found as " $2.24 \times 10^{-4} \mathrm{~g} /(\mu$ mole day $) . "$
a) Find out the thiosulfinate concentration remaining after 6 mo of storage for 1 kg dehydrated onions.
b) Calculate the storage time when thiosulfinate concentration reaches to the acceptable minimum pungency level (shelf-life! ${ }_{2}^{1}$

$$
\frac{1}{\mathrm{~A}}=\mathrm{k}_{2} t+\frac{1}{\mathrm{~A}}
$$

■ $\mathrm{A}=8.53 \mu \mathrm{~mole} / \mathrm{g}$

$$
\begin{array}{ccc}
\mu \text { mole } & 1000 & \mu \text { mole } \\
\mathrm{A}=8.53 \text {--------------------- }=8530 & \mu \mathrm{~mole} / \mathrm{kg} \\
\mathrm{~g} & 1000 & 1000 \mathrm{~g}
\end{array}
$$

■ $t=549$ days, or 18.3 mo

Example 3.22

Ascorbic acid loss was studied in baby food fortified with aa during storage at $20^{\circ} \mathrm{C}$. Reaction rate was found to be directly proportional to the square of aa concentration. After 5 mo of storage at $20^{\circ} \mathrm{C}$, aa content decreased from initial $15 \mathrm{mg} / 100 \mathrm{~g}$ to 8.4 $\mathrm{mg} / 100 \mathrm{~g}$. Calculate the aa remaining (\%) in this product at the end of 1 year of storage at $20^{\circ} \mathrm{C}$.

■ Figure out the order of reaction!!!!
k value for the aa degradation in this food product is calculated from following equation:

$$
\frac{1}{\mathrm{~A}}=\mathrm{k}_{2} t+\frac{1}{\mathrm{~A}}
$$

Answer: $k_{2}=1.05 \times 10^{-2}$ unit?

AA remaining (\%) in this product at the end of 1 year of storage at $20^{\circ} \mathrm{C}$ is calculated from the following equation:

Answer: $A=5.2 \mathrm{mg} / 100 \mathrm{~g}$

$$
5.2
$$

AA remaining, $\%=------(100)=34.7 \%$
15

Example 3.23

■ Nitrosyl chloride (NOCl), decomposes slowly to NO and Cl_{2} gaseous. The rate constant (k) equals 0.02 L mole $^{-1} \mathrm{~s}^{-1}$ at a certain temperature. The initial concentration of NOCl in a closed reaction vessel is 0.05 M .
a) What will the NOCl concentration be after 30 min ?
b) Determine the time in minutes to drop NOCl concentration to 0.01 M .

Answers

- $\mathrm{A}_{\mathrm{t}}=0.018$ mole L^{-1}

■ $\mathrm{t}=4000 \mathrm{~s}=66.7 \mathrm{~min}$

Summary of Reaction Orders

Reac. orders	Differential rate laws	Integrated equations	Straight lines	Units of \boldsymbol{k}
Zero	$-\mathrm{d}[\mathrm{C}] / \mathrm{dt}=k[\mathrm{C}]^{0}$	$[\mathrm{C}]=-k_{o} \mathrm{t}+[\mathrm{C}]_{0}$	$[\mathrm{C}]$ vs. t slope $=k_{0}$	conc./time

First $\quad-\mathrm{d}[\mathrm{C}] / \mathrm{dt}=k[\mathrm{C}]^{1} \quad \begin{array}{ll} & \ln [\mathrm{C}]=-k_{l} \mathrm{t}+\ln [\mathrm{C}]_{\mathrm{o}} \\ & \log [\mathrm{C}]=-k_{l} / 2.303 \mathrm{t}+ \\ & \log [\mathrm{C}]\end{array}$ $\log [\mathrm{C}]_{\mathrm{o}}$
slope $=k_{0} \quad$ conc./time
\ln [C] vs. t
slope $=k_{1}$
$\log [\mathrm{C}]$ vs. t
slope $\mathrm{x} 2.303=\mathrm{k}_{1}$
1/time

1/[C] vs. t
slope $=k_{2} \quad 1 /($ conc. time $)$

Example 3.24

The reaction rate constant for the degradation of endogenous toxin in crabs during cooking was found as 0.05. Assume that the degradation of this toxin occurs for zero-, first- and second-order reaction kinetics. If the initial concentration of this toxin is $15 \mathrm{mg} / \mathrm{kg}$, find out the toxin concentration for each of the reaction order at the end of 1 h of cooking.
Note: The unit of reaction rate constant depends on the order of reaction and the unit of time will be taken as min.

Crab

Units of reaction rate constants for each reaction order

- Zero-order $\rightarrow \mathrm{k}_{\mathrm{o}}=$
- First-order $\rightarrow \mathrm{k}_{1}=$
- Second-order $\rightarrow \mathrm{k}_{2}=$
- Zero-order $\rightarrow \mathrm{k}_{\mathrm{o}}=0.05 \mathrm{mg} \mathrm{kg}^{-1} \mathrm{~min}^{-1}$
- First-order $\rightarrow \mathrm{k}_{1}=0.05 \mathrm{~min}^{-1}$
- Second-order $\rightarrow \mathrm{k}_{2}=0.05 \mathrm{~kg} \mathrm{mg}^{-1} \mathrm{~min}^{-1}$

Zero-order reaction

$[\mathrm{C}]=-k_{0} \mathrm{t}+[\mathrm{C}]_{0}$
$[C]=12 \mathrm{mg} \mathrm{kg}^{-1}$

First-order reaction

$$
\begin{aligned}
\ln [\mathrm{C}] & =-k_{1} \mathrm{t}+\ln [\mathrm{C}]_{0} \\
{[\mathrm{C}] } & =\mathbf{0 . 7 4 7} \mathbf{~ m g ~ k g}
\end{aligned}
$$

Second-order reaction

$1 /[C]=k_{2} t+1 /[C]_{0}$
$[C]=0.326 \mathrm{mg} \mathrm{kg}^{-1}$

