Activation Energy (E_a)

- E_a value indicates that how <u>temp. changes</u> during processing or storage affect the *k* value of the reaction.
- The higher <u>E_a value</u> of the reaction, the more <u>sensitive</u> for the reaction to <u>temp. changes</u> <u>during storage or processing.</u>
- E_a value is specific for each chemical, microbial and enzymatic reaction.

$\checkmark~{\sf E}_a$ cannot be directly measured.

✓ <u>E_a is calculated from Arrhenius equation</u>.
This equation (described by Svante Arrhenius in 1889) gives the relationship <u>between *k* and temp</u>. of processing or storage.

Therefore, we need k and temp. values to determine E_a

Arrhenious equation

 $\mathbf{k} = \mathbf{k}_{o} \, \mathbf{e}^{-\mathrm{Ea}/\mathrm{RT}}$

- k: Reaction rate constant (for any reaction order)
- k_o: frequency factor (same unit as k)
- E_a: Activation energy of the reaction (cal/mole of J/mole)
- R: Gas constant (1.987 cal/(mole K) or 8.314 J/(mole K)
- T: Temperature (K)

Take In of both sides

Find the equivalence of this equ. on log₁₀

To determine E_a value graphically

- First identify the quality factor of concern and then determine *k* values at least at <u>three different temp</u>., preferably at five different processing or storage temp.
- \checkmark Then, plot *k* values vs 1/T values.
 - > Using aritmetic graph paper: Take In of k values and reciprocal of temp. values in Kelvin and then plot In k vs 1/T. Slope will be equal to $-E_a/R$.
 - > Using semi-log graph paper: Plot original k values vs 1/T values. Slope will be equal to $-E_a/2.303R$.
- \checkmark From slope, calculate E_a value.

- Be aware that all k values should be in the same order and the same unit for the calculation of E_a.
- Reactions that their k value (rate) increase with temp. have negative slopes in Arrhenius plot.

Therefore, E_a will always be positive.

"k_o" is equal to intercept value of Arrhenius graph.

Intercept (b) = $\ln k_o$

Example

Oxidative degradation of aa was determined in orange juice at three different storage temperatures. Determine the E_a value (kJ/mole) for the degradation of aa.

AA contents in orange juice stored at various temp.

Temperature (°C)	Time (h)	AA content (mg mL ⁻¹)	
23	20	0.948	
	40	0.476	
	60	0.004	
35	5	1.029	
	10	0.758	
	20	0.261	
45	0	1.200	
	5	0.655	
	10	0.109	

Example

Oxidative degradation of aa was determined in orange juice at three different storage temperatures. Determine the E_a value (kJ/mole) for the degradation of aa.

Note: The straight line in arithmetic graph paper was obtained from aa conc. vs time curve.

Solution

Since reaction is zero-order, as content versus storage period is plotted in arithmetic graph paper.

k vales are calculated from slopes

Temperature (°C)	Slopes (mg mL ⁻¹ h ⁻¹)	<i>k</i> (mg mL ⁻¹ h ⁻¹)
23	0.0236	?
35	0.0542	?
45	0.1090	?

Values for Arrhenius plot of aa oxidation

Temp.(°C)	Temp.(K)	$1/\mathrm{Tx}10^{3}$	k	lnk
		(K)		
23	296	3.38	0.0236	-3,7465
35	308	3.25	0.0542	-2.9151
45	318	3.15	0.1090	-2.2164

Arrhenius plot (<u>*ln k*</u> vs <u>1/T</u>, arithmetic graph paper)

y = -6,5358x + 18,325 $R^2 = 0,9995$

1/T (K) * 1000

Calculation of slope

$$Slope = \frac{-3.60 - (-2.40)}{(3.35 - 3.17) \times 10^{-3}}$$

or;
$$Slope = \frac{-3.60 - (-2.40)}{0.00335 - 0.00317}$$

Slope = -6667 K

Calculation of E_a

$$-6667 \text{ K} = \frac{-E_a}{1.987 \text{ (unit?)}}$$

 $E_a = 13 246$ (unit?)