Activation Energy (E_{a})

- E_{a} value indicates that how temp. changes during processing or storage affect the k value of the reaction.
- The higher E_{a} value of the reaction, the more sensitive for the reaction to temp. changes during storage or processing.
- E_{a} value is specific for each chemical, microbial and enzymatic reaction.
$\checkmark E_{a}$ cannot be directly measured.
$\checkmark \underline{E}_{\underline{a}}$ is calculated from Arrhenius equation.
This equation (described by Svante Arrhenius in 1889) gives the relationship between k and temp. of processing or storage.
- Therefore, we need k and temp. values to determine E_{a}

Arrhenious equation

$$
\mathbf{k}=\mathbf{k}_{\mathbf{o}} \mathbf{e}^{-E a / R T}
$$

- k : Reaction rate constant (for any reaction order)
- k_{0} : frequency factor (same unit as k)
- E_{a} : Activation energy of the reaction (cal/mole of $\mathrm{J} / \mathrm{mole}$)
- R: Gas constant ($1.987 \mathrm{cal} /($ mole K$)$ or $8.314 \mathrm{~J} /($ mole K)
- T: Temperature (K)

Take In of both sides

$$
-\mathrm{E}_{\mathrm{a}}
$$

-Find the equivalence of this equ. on $\log _{10}$

To determine \mathbf{E}_{a} value graphically

\checkmark First identify the quality factor of concern and then determine k values at least at three different temp., preferably at five different processing or storage temp.
\checkmark Then, plot k values vs 1/T values.
> Using aritmetic graph paper: Take In of k values and reciprocal of temp. values in Kelvin and then plot $I n k$ vs $1 / T$. Slope will be equal to $-E_{a} / R$.
> Using semi-log graph paper: Plot original k values vs 1/T values. Slope will be equal to - $\mathrm{E}_{\mathrm{a}} / 2.303 \mathrm{R}$.
\checkmark From slope, calculate E_{a} value.

- Be aware that all k values should be in the same order and the same unit for the calculation of E_{a}.
- Reactions that their k value (rate) increase with temp. have negative slopes in Arrhenius plot.
Therefore, E_{a} will always be positive.
- " k_{0} " is equal to intercept value of Arrhenius graph.

Intercept $(b)=\ln \mathrm{k}_{\mathrm{o}}$

Example

Oxidative degradation of aa was determined in orange juice at three different storage temperatures. Determine the E_{a} value ($\mathrm{kJ} / \mathrm{mole}$) for the degradation of aa.

AA contents in orange juice stored at various temp.

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Time (h)	AA content $\left(\mathrm{mg} \mathrm{mL}^{-1}\right)$
23	20	0.948
	40	0.476
	60	0.004
35		
	10	1.029
45	20	0.758
		0.261
	5	1.200
	10	0.655
		0.109

Example

Oxidative degradation of aa was determined in orange juice at three different storage temperatures. Determine the E_{a} value ($\mathrm{kJ} / \mathrm{mole}$) for the degradation of aa.

Note: The straight line in arithmetic graph paper was obtained from aa conc. vs time curve.

Solution

Since reaction is zero-order, aa content versus storage period is plotted in arithmetic graph paper.

k vales are calculated from slopes

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Slopes $(\mathrm{mg} \mathrm{mL-}$ $\left.\mathrm{h}^{-1}\right)$	k $\left(\mathrm{mg} \mathrm{mL}^{-1} \mathrm{~h}^{-1}\right)$
23	0.0236	$?$
35	0.0542	$?$
45	0.1090	$?$

Values for Arrhenius plot of aa oxidation

Temp. $\left({ }^{(} \mathbf{C}\right)$	Temp.(K)	$\mathbf{1 / T x 1 0} \mathbf{0}^{3}$ (\mathbf{K})	\mathbf{k}	lnk
23	296	3.38	0.0236	$-3,7465$
35	308	3.25	0.0542	-2.9151
45	318	3.15	0.1090	-2.2164

Arrhenius plot ($\ln k$ vs 1/T, arithmetic graph paper)

Calculation of slope

$$
\begin{gathered}
\text { Slope }=\frac{-3.60-(-2.40)}{(3.35-3.17) \times 10^{-3}} \\
\text { or; } \\
\text { Slope }=\frac{-3.60-(-2.40)}{0.00335-0.00317}
\end{gathered}
$$

Slope $=-6667 \mathrm{~K}$

Calculation of E_{a}

$$
\begin{aligned}
& \text { Slope }=-\frac{E_{a}}{R} \\
& -6667 \mathrm{~K}=\frac{-\mathrm{E}_{\mathrm{a}}}{1.987 \text { (unit?) }} \\
& \mathrm{E}_{\mathrm{a}}=13246 \text { (unit?) }
\end{aligned}
$$

