### **GDM201 Mass and Energy Balances**

Dr. Mehmet Özkan Tel: 203 3300/3621 e-posta: mozkan@ankara.edu.tr ozkanm64@gmail.com

Office hours: Tuesday, 14:00–16:00

### Contents

### Dimensions and their units

- Some basic physical properties (concentration, density, temperature, heat and pressure)
- Principles and examples of mass balances
- Principles and examples of energy balances

## **Suggested readings**

 Toledo RT. 1994. *Fundamentals of Food Process Engineering*. 2<sup>nd</sup> ed., Chapman & Hall, New York, NY.

Chapter 2: Units and dimensions, p.51-65.Chapter 3: Material balances, p.66-108.Chapter 5: Energy balances, p.132-159.

2) Özkan M, Cemeroğlu B, Türkyılmaz M. 2011. *Gıda Mühendisliğinde Kütle ve Enerji Denklikleri*. 251 s, Gıda Teknolojisi Derneği Yayınları No: 43, Bizim Grup Basımevi, Ankara.

### Class programme (14 weeks)

- 1<sup>st</sup> week: Definition of dimensions, system of measurements (metric, English and SI unit systems)
- 2<sup>nd</sup> week: Conversion of units
- 3<sup>rd</sup> week: Definition and units of concentration and density
- 4<sup>th</sup> week: Definition and units of temperature, heat and pressure

5<sup>th</sup> week: Principles of mass balance, process flow diagrams, total mass balance and component mass balance

- 6<sup>th</sup> week: Mass balance problems involved in sugar syrup preparation
- 7<sup>th</sup> week: Mass balance problems involved in fruit juice, nectars, and jams and marmalade preparation

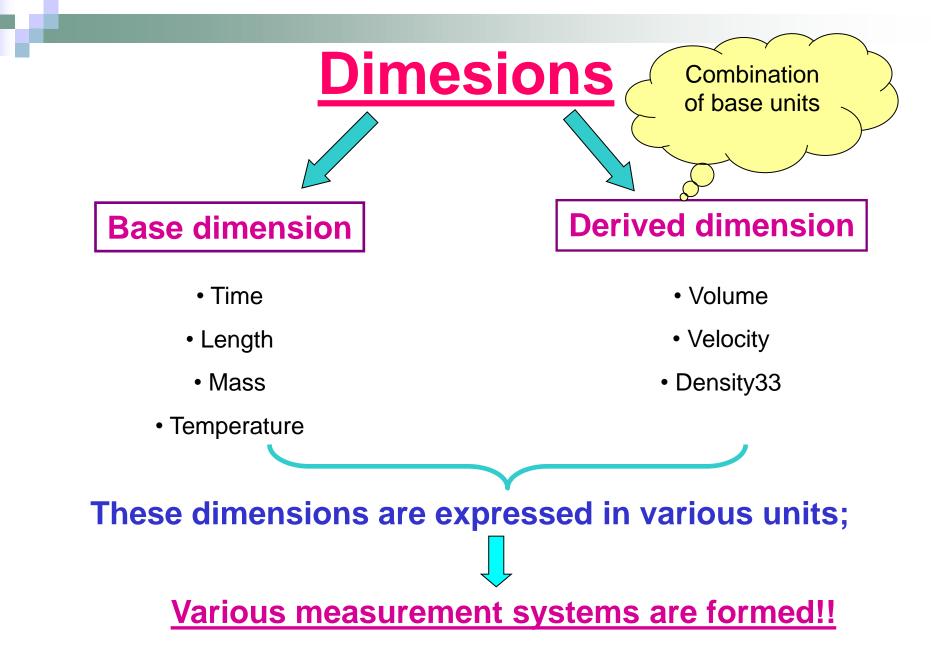
8<sup>th</sup> week: Mass balance problems involved in dilution, dehydrtaion and concentration

- 9<sup>th</sup> week: Midterm
- 10<sup>th</sup> week: Mass balance problems involved in the multistage processes (filtration, crystallization and extraction)

**11<sup>th</sup> week:** Principles of energy balance, heat (sensible and latent heat), enthalpy, specific heat of solids and liquids

 12<sup>th</sup> week: Enthalpy change during phase changes, specific heat of gases

- 13<sup>th</sup> week: Properties of saturated and superheated steam, the use of steam tables, double interpolation from steam tables
- 14<sup>th</sup> week: Energy balance problems involved in various food processes




## DIMENSIONS, MEASUREMENT SYSTEMS AND UNITS



### What is dimension and unit?

- Dimension : A physical quantity, which can be measured
  - Example : Lenght, area, volume, mass, time, temperature
- Unit : The quantitative magnitude of a dimension
  - **Example : length**  $\implies$  m, cm, mm
    - mass 📥 kg, g, mg
    - time second (s), hour (h)



Most common measurement systems

English engineering system (ees)

<u>Centimeter-gram-second system (cgs)</u>

Meter-kilogram-second sytem (mks)

Ees is primarily used by American and British chemical and food industries.

Outside USA and Britain, industry uses <u>mks</u> system, and science uses <u>cgs</u> and <u>SI</u> unit systems.

#### Tabel 1.1 Systems of measurement (base units)

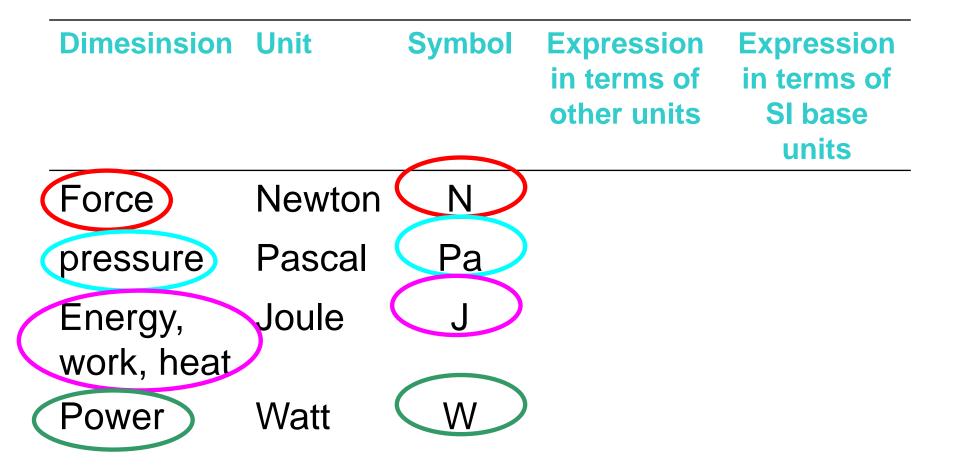
| System | Length | Mass            | Time | Temp. | Force           | Energy |
|--------|--------|-----------------|------|-------|-----------------|--------|
| Ees    | Foot   | lb <sub>m</sub> | S    | °F    | lb <sub>f</sub> | BTU    |
| Metric |        |                 |      |       |                 |        |
| Cgs    | cm     | g               | S    | °C    | Dyne            | cal    |
| mks    | m      | kg              | S    | °C    | kg <sub>f</sub> | kcal   |
| SI     | m      | kg              | S    | K     | Newton          | Joule  |

## SI Unit system

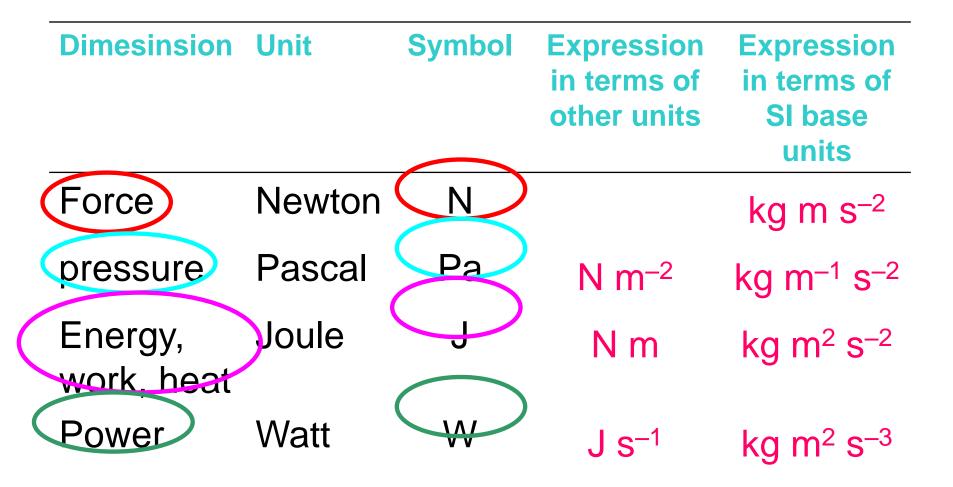
Units in various measurement system

needs to be converted!!

<u>To form a standart measurement system;</u> "<u>International System of Units" (SI)</u> was formed under "General Conference on Weights and Measures" in1960.


## Tabel 1.2 Base dimensions and their units in SI system

| Dimension             | Unit     | Sembol |
|-----------------------|----------|--------|
| Length                | meter    | m      |
| Mass                  | kilogram | kg     |
| Time                  | second   | S      |
| Electric current      | amper    | А      |
| Temperature           | kelvin   | κ      |
| Amount of substance   | mole     | mol    |
| Luminous<br>intensity | candela  | cd     |


# Tablo 1.3 Derived dimensions and their units in SI system

| Derived<br>deimensions         | Definition               | Unit<br>(symbol)   |
|--------------------------------|--------------------------|--------------------|
| Area                           | length x length          | m <sup>2</sup>     |
| Volume                         | length x length x length | m <sup>3</sup>     |
| Velocity                       | length/time              | m/s                |
| Acceleration<br>due to gravity | length/(time x time)     | m/s <sup>2</sup>   |
| density                        | mass/volume              | kg/m <sup>3</sup>  |
| Concentration                  | mole/volume              | mol/m <sup>3</sup> |
| Specific volume                | volume/mass              | m <sup>3</sup> /kg |

## Table 1.4 Some derived dimensions with assigned names, and their units and symbols



## Table 1.4 Some derived dimensions with assigned names, and their units and symbols



Newton (N): The force that gives to a mass of 1 kg an acceleration of 1 m/s<sup>2</sup>.

(Force=mass x accelaration due to gravity)

(1 kg'lık kütleye 1 m/s<sup>2</sup> ivme kazandıran kuvvete 1 Newton denir.)

Joule (J): The work done when a force of 1 N is displaced by a distance of 1 m in the direction of force. (1 N'luk kuvvetin kendi doğrultusunda 1 m yol almasıyla yapılan işe, 1 Joule denir.) Heat, energy and work are all in the same dimension.

(Energy=force x length)

Pressure (Pa): Force per unit area applied in a direction perpendicular to the surface of an object. (Birim alana etki eden kuvvete basınç denir.) (Pressure=force/area)

Watt (W): The power that gives rise to the production of energy at the rate of 1 J/s. (Birim zamanda yapılan işe ya da enerjiye, güç denir.)

(Power=Energy/time)

### Tablo 1.5 Examples of SI-derived units expressed by means of special names

| Diemsion               | Formula                    | Symbol | Expression<br>in terms of<br>SI base units |
|------------------------|----------------------------|--------|--------------------------------------------|
| Viscosity              | Pressure x time            |        |                                            |
| Heat capacity          | Energy / Temp.             |        |                                            |
| Specific heat capacity | Energy / (mass<br>x Temp)  |        |                                            |
| Thermal conductivity   | Power / (length<br>x Temp) |        |                                            |

### Tablo 1.5 Examples of SI-derived units expressed by means of special names

| Diemsion               | Unit                           | Symbol | Expression<br>in terms of<br>SI base units |
|------------------------|--------------------------------|--------|--------------------------------------------|
| Viscosity              | Pascal second                  |        |                                            |
| Heat capacity          | Joule / Kelvin                 |        |                                            |
| Specific heat capacity | Joule / (kilogram<br>x Kelvin) |        |                                            |
| Thermal conductivity   | Watt / (meter<br>x Kelvin)     |        |                                            |

#### Tablo 1.5 Examples of SI-derived units expressed by means of special names

| Diemsion               | Unit         | Symbol                             | Expression<br>in terms of<br>SI base units |
|------------------------|--------------|------------------------------------|--------------------------------------------|
| Viscosity              | Pa s         | Pas                                | kg m <sup>-1</sup> s <sup>-1</sup>         |
| Heat capacity          | J/K          | J K−1                              | kg m² s⁻² K⁻<br>₁                          |
| Specific heat capacity | J / (kg x K) | J kg <sup>−1</sup> K <sup>−1</sup> | m² s <sup>−2</sup> K <sup>−1</sup>         |
| Thermal conductivity   | W / (m x K)  | W m <sup>−1</sup> K <sup>−1</sup>  | m kg s <sup>–3</sup> K <sup>–1</sup>       |

25

#### Tablo 1.6 Prefixes recommended for use in SI

| Prefix | Multiple                 | Symbol       |
|--------|--------------------------|--------------|
| tera   | 10 <sup>12</sup>         | T Capital    |
| giga   | 10 <sup>9</sup>          | G            |
| mega   | 10 <sup>6</sup>          | M            |
| kilo   | 1000                     | k            |
| hekto  | 10 <sup>2</sup>          | h Lower case |
| deka   | 10 <sup>1</sup>          | da letter    |
| deci   | 10 <sup>-1</sup>         | d 📕          |
| centi  | 10 <sup>-2</sup>         | С            |
| mili   | <b>10</b> <sup>-3</sup>  | m            |
| micro  | <b>10</b> <sup>-6</sup>  | μ            |
| nano   | <b>10</b> <sup>-9</sup>  | η            |
| pico   | <b>10</b> <sup>-12</sup> | р            |
| femto  | 10 <sup>-15</sup>        | f 26         |

1 g = 10<sup>3</sup> mg = 10<sup>6</sup> µg = 10<sup>9</sup> ng = 10<sup>12</sup> pg
1 m = 10<sup>3</sup> mm = 10<sup>6</sup> µm = 10<sup>9</sup> nm = 10<sup>12</sup> pm

A dimension should be expressed as a numerical quantity and a unit must be such that the numerical quantity is between <u>0.1 ile</u> <u>1000</u>.

Examples:

10,000 cm ..... M. 0,0000001 m .... μm. 10,000 Pa ..... kPa