Principles of unit conversion

- Dimensional equation: Equation containing <u>numerical value</u> and <u>its unit</u>
- For example; 10 BTU/(h ft °F) = 56.78 W/m °C is an dimensional equation.
- Whatever the mathmatical procedure is applied to the numerical value in dimensional equation, the same procedure is applied to the units in dimensional equation.

During unit conversion

Prepare an equation

In the equation, the followings should occur:
Conversion factor

□ the unit of final answer

□ the unit being converted

conversion units

Calculate the conversion factor from the equation

Steps in conversiton of units

- Place the units of the final answer on the left-hand side of the equation and the unit being converted on the right hand side of equation.
- Do <u>not</u> add the numerical value of the unit being converted to the equation.
- Then, put an equal sign between two expression.

- Conversion units are found from conversion tables for the units to be converted in the right hand side of equation.
- Set up the conversion units as a ratio, using Appendix Table 1.
- Sequantially multiply the conversion factors such that the original units are systematically eliminated by cancellation replacement with the desired unit.

- After cancellation of units in the right hand side of equation, appropriate conversion factor is calculated.
- The numerical value in front of the unit converted is now taken into consideration. This numerical value is put on both side of equation.

Example 1: Covert thermal conductivity in English Engineering System (10 BTU/(h ft °F)) to SI unit system.

CF = 1.73 10 BTU/(h ft °F) = 17.3 J/(m s K)

Example 2: Specific heat of orange juice concentrate with 45% water soluble solid content is $c_p = 0.64 \text{ BTU/lb}_m \,^\circ\text{F}$. Express this value in **SI unit** system.

CF = 4186.5 0.64 BTU/ $Ib_m \,^{\circ}F = 2679.4 \, J/kg \, K$

Example 3: Heat transfer coefficient of salami at 21°C is $h_s = 210 \text{ BTU/ft}^2 \text{ h }^{\circ}\text{F}$. Express this value in <u>SI unit</u> system.

Result:

CF = 5.6780

210 BTU/ h ft² °F = 1192.4 J/m² s K

Example 4: The density of cow milk is 64.5 Ib_m/ft^3 . Express this value in <u>SI unit</u> system.

Result:

CF = 16.0264.5 lb_m/ft³ = 1033.3 kg/m³

Example 6: For a fluid passing through a pipe, type of flow (laminar, turbulant) depends on the pressure (ρV^2) and viscosity forces ($\mu V/D$) of fluid. And, the ratio of these values gives Reynold number (RN). RN is used to determine the type of flow. If RN is:

- below 2300, the flow is laminar,
- above 4000, the flow is turbulant,
 - In between 2300-4000, the flow is transition (mixed).

where;

- D : diameter of the pipe in which the liquid flows, m,
- V: velocity, m/s,
 - ρ : density, kg/m³,
 - μ : viscosity, kg/m s.

In a milk processing plant, the type of flow of milk is found to be turbulant (Re=50000). The velocity (V) of milk flowing in a diameter (D) of 1 in. of a pipe is 13.5 ft/s and the density (ρ) at 294 K is 64.3 lb_m/ft³. Wall thickness of the pipe is 0.1 in. Determine the viscosity (μ) of milk at 294 K in:

SI unit system,

cgs unit system.

Example 7 : A tube is filled with a fruit juice with the height of h cm and density of p. The pressure exerted to the base of the tube by this fruit juice is P atmosphere. Calculate the density of fluid in the SI system.

Answer: $1 \ge 10^{6} \text{ kg/m}^{3}$

Example 8: In a milk processing plant, once the milk is brought to the plant, first, the milk is placed in a pre-storage tank and then centrifuged to remove somatic cells, leucosits, blood coagulates and some microorganisms (clarification process). During this clarification process, the milk is pumped to the centrifuge which is 5 m higher than the storage tank at a velocity of 120 kg/min. During transportation, the friction loss in pipes is 45 J/kg and calculate the necessary power of pump is "SI" unit system.

Answer: 188.1 W

Example 9: The heat loss through the walls of an electrical oven is 6500 BTU/h. If the oven is operated for 2 h, how many kilowatt-hours of electricity will be used just to maintain the oven temperature (heat input = heat loss)?

Answer: 3.8 kW h

Example 10: The height of a pomegranate juice with a density of 1.068 g/cm³ in a tube is 8.325 in. Calculate the pressure applied by pomegranate juice in the SI system.

Answer: 2215.1 kg/(m s²) (Pa)

Lenght units in English engineering sytem

- 1 in = 2.54 cm
- 1 foot = 12 in
- 3 feet = 1 yard
- 3.28 feet = 1 m

Volume units in English engineering sytem

- 1 gal = 3.79 L
- 1 gal = 4 quarts
- 1 quart = 2 pints
- 1 pint = 16 fluid ounce (fl oz)
- 1 quart = 32 fluid ounce

Example 11: Calculate your height in "feet" and "in." (173 cm)

Answer: 5'8"

Example: Calculate the area of rectangular with the measurement of 2' 5''^{1/16} and 5' 9''^{3/32} in SI unit system.

Answer: 2.1 m²

Example 12: Calculate the volume of a car tank with the capacity of 40 L in "gallons" and "pints." Example 15: Express the viscosity values given below as the unit asked.

Viscosity is the resistance of fluids to movement.

Viscosity = Pressure x time

a) Express 20 cp in "Pa s."

b) Express 15 cp in "EES."

c) Express "30 lb_m/(ft h)" in "SI" unit system.

Answers

a) 20 cp = 0.02 Pa s

b) 15 cp = 0.01 $lb_m/(ft s)$

c) $30 \text{ lb}_{\text{m}}/(\text{ft h}) = 0.0124 \text{ kg}/(\text{m s})$

Example 16: Pressure is expressed in the SI system in Pascals. Calculate the English equivalent of 8 Pa. (lb_f = 4.44823 N)

Answer: 8 Pa = $0.00116 \frac{lb_f}{in^2}$

Example 17: Calculate the power in (SI system) required for peach nectar which flows down the raceway of a reservoir at a rate of 525 lb_m/min from a height of 12.3 ft.

Answer: 146 W