ENERGY BALANCES

Energy

- Energy was first hypothesized by Newton.
- Newton was the first who expressed kinetic and potential energies.

Energy

- Potantial,
- Kinetic,

Chemical,

- Mechanical,
- Electrical

Energy cannot be measured directly.

Potantial energy

>Energy of an object due to its height.

$$
>\text { P.E. }=m g h
$$

Kinetic energy

- Energy of an object due to its velocity.

$$
- \text { K.E. }=\frac{1}{-m v^{2}}
$$

2

Internal energy

- Atoms and molecules move constatntly in random direction. Atoms vibrate, rotate and collide with each other.

- Energies related to all these movements are called as the internal energy.

During processing of food;

One or two forms of energy are predominant, the others can be omitted.

Example-1

- Depositing of sugar beets from conveyor to the tank

- Potantial and kinetic energy changes,
- Chemical end electrical energies do not change

Example-2

During heating of tomato juice

 in a heat exchanger,- Potantial and kinetic energy do not change,
- Internal energychanges as a result of change in temperature

Total energy of a system or an object;

$\mathrm{E}_{\text {Toplam }}=\mathrm{E}_{\mathrm{KE}}+\mathrm{E}_{\mathrm{PE}}+\mathrm{E}_{\text {Electrical }}+\circ$ $\mathrm{E}_{\text {Manyetic }}+\mathrm{E}_{\text {Chemical }}+\ldots+$ $E_{\text {Internal }}$

$E_{\text {Toplam }}=E_{\text {GE }}+E_{\text {PE }}+E_{\text {Internal }}$

Energy

- Not static, always in flux.
- Even under steady-state conditions, an object absorbs energy from its surroundings and at the same time emits energy to its surroundings at the same rate.
- When there is imbalance between the energy absorbed and emitted, the steady-state is altered, molecular energy in the system may increase or new compounds may be formed.

First law of thermodynamics (law of conservation of energy);

- In an isolated system, overall energy does not change.
- Indicating that the energy do not form or disappear.
- Only the energy in one form can be converted to another form.

Energy balance equation:

- determined as in the case of mass balances.

Energy
 balance equation;

Energy in $=$ energy out + accumulation

In steady-state,

- Accumulation will be zero.

Energy balance equation;

Energy entering the system = Energy leaving the system

If the system involves only an exchange of energy between two components;

Energy balances are done for:

- Identifying areas where energy conservation can be done.
- In designing heating or cooling systems to ensure the right amount of fluids used for heat exchange and the right size of equipment used to achieve the processing objectives.

Enthalpy

Sum of internal energy and the multiplication of pressure and specific volume

$$
\mathrm{H}=\mathrm{E}+\mathrm{P} \mathrm{~V}^{\prime}
$$

H: Enthalpy, kJ/kg
E: Internal energy, $\mathrm{kJ} / \mathrm{kg}$
P: Pressure, kPa
V': Specific volume, $\mathrm{m}^{3} / \mathrm{kg}$

- When the enthalpy of an air in a room is described, then this enthalpy includes the internal energy.
- If a liquid enters and leaves the open system, then the enthalpy will be equal to the multiplication of pressure and specific volume (flow energy).

Enthalpy

- Enthalpy cannot be measured directly.
- Enthalpy values should always be given on the reference conditions (in particular temperature).
- For steam tables, reference temperature is $0^{\circ} \mathrm{C}$.

Heat

- A form of energy.
- "Heat exchange occurs between a system and its surroundings because of temperature difference.
- Heat transfers from a hot object to a cold one.
- Heat is used in many food applications, particularly in cooking and preservation (pasteurization and sterilization).
- Common heat units are calorie, kilo-calorie, BTU and joule.

Heat (Q);

- The sign of Q shows the flux of heat.

If heat transfers from a system to its surroundings

if heat transfers from the
surroundings into a system (heating of potato)

Specific heat

- Amount of heat gained or lost for a unit mass of a substance, accompanying a unit change in temperature of the substance but not involving with phase change.
- Specific heat of solids and liquids are constant over a fairly wide temperature range.
- Specific heat of gases varies with temperature.

$\underline{c}_{\underline{p}}$ ve $_{\underline{v}}^{\underline{v}}$ değerleri;

- c_{p} and c_{v} are similar for solids and liquids.
- c_{p} and c_{v} are different for gases.
- Since most food processes are carried out under constant pressure, the specific heat values under constant pressure are used for food processing calculations.

Forms of heat

Sensible heat;

 energy associated to change in the temperature of system or object (food)
Laten heat;

 energyassociated with phase
transitions (no temperature changes)

Sensible heat of foods

$$
Q=m C_{p}(\Delta T)
$$

Q : Sensible heat gained by food, kJ m : Mass of food, kg
C_{p} : Specific heat of food, $\mathrm{kJ} / \mathrm{kg}{ }^{\circ} \mathrm{C}$ $\Delta \mathrm{T}$: Change in temp of food, ${ }^{\circ} \mathrm{C}$

- Example 4.1: Calculate the enthalpy change during heating of 3 kg water from $20^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$.

Sensible and latent heat:

- If we continue to heat water, temperature of water will also increase and finally water boils (Sensible heat).
- If we still heat boiling water, water molecules will start to transfer to vapor phase. During this process, temperature of vapor will still be $100^{\circ} \mathrm{C}$ (just phase transition). In order to evaporate the water molecules, we need to give the latent heat of vaporization.

Latent heat of condensation is equal to latent heat of evaporation.

- Condensation is the phase change from vapor phase to liquid phase.
- If heat is removed from vapor, then distance between vapor molecules will decrease and vapor molecules will condensate in droplets. Heat removed during this process is called as latent heat of condensation.
- If water in liquid state changes to solid phase, heat released will be latent heat of freezing.
- During melting of a frozen material, the same amount of heat absorbed and this heat is called as latent heat of fusion.
- Boiling point of water depends on the pressure.
- At 1 atm , water boils at $100^{\circ} \mathrm{C}$.
- If pressure is increased, then boiling point will also increase.
- Latent heat of vaporization of water also depends on boiling point of water.
- The relationship between pressure, boiling water and latent heat of vaporization is given in Table 4.1.

Pressure (atm)	Boling point of water $\left({ }^{\circ} \mathrm{C}\right)$	Latent heat of vaporization $(\mathrm{kcal} / \mathrm{kg})$
1	100	540
1.5	110	532.5
0.2	60	563

- Example 4.2: 3 kg of water at $20^{\circ} \mathrm{C}$ was boiled under 1.5 atm of pressure and $110^{\circ} \mathrm{C}$, and then transformed to vapor. Calculate the enthalpy change for the vapor $110^{\circ} \mathrm{C}$.

■ Example 4.3: The temperature of 2 kg water at $20^{\circ} \mathrm{C}$ increases to $110^{\circ} \mathrm{C}$ after heating under 1.5 atmosphere constant pressure. After continuous heating, the temperature of the resulting vapor at $110^{\circ} \mathrm{C}$ increases to $125^{\circ} \mathrm{C}$. The specific heat of vapor is $0.445 \mathrm{kcal} / \mathrm{kg}^{\circ} \mathrm{C}$.
a) Calculate the enthalpy change during transforming 2 kg water to vapor at $125^{\circ} \mathrm{C}$.
b) Calculate the entalphy of vapor at $125^{\circ} \mathrm{C}$.
\square Final enthalpy (629.2) is not the enthalpy of vapor at $125^{\circ} \mathrm{C}$.

- It is the total heat needed to transfer 1 kg water to 1 kg vapor at $125^{\circ} \mathrm{C}$.
- If we want to calculate enthalpy of vapor at $125^{\circ} \mathrm{C}$, we need to take into consideration of enthalpy of water between 0° and $20^{\circ} \mathrm{C}$. The reference point in enthalpy calculation is $0^{\circ} \mathrm{C}$. $Q=(1 \mathrm{~kg})\left(1 \mathrm{kcal} / \mathrm{kg}{ }^{\circ} \mathrm{C}\right)(20-0)^{\circ} \mathrm{C}=20 \mathrm{kcal}$
- Enthalpy of vapor at $125^{\circ} \mathrm{C}$ will be the sum of " $20+629.2=649.2$ kcal."
- Example 4.4: The ice at $-10^{\circ} \mathrm{C}$ was melted by heating and then under normal atmospheric pressure, the resulting water molecules were transferred to vapor at $100^{\circ} \mathrm{C}$. Calculate the enthalpy change during transforming 5 kg ice to vapor. The specific heat of ice is $0.5 \mathrm{kcal} / \mathrm{kg}$ ${ }^{\circ} \mathrm{C}$ and latent heat of fusion is $80 \mathrm{kcal} / \mathrm{kg}$.
- Example 4.5: The fruit at $25^{\circ} \mathrm{C}$ is frozen to $20^{\circ} \mathrm{C}$. The specific heat of fruit above freezing point is $0.95 \mathrm{kcal} / \mathrm{kg}{ }^{\circ} \mathrm{C}$ and the freezing point of fruit is $-3^{\circ} \mathrm{C}$, the specific heat of fruit below freezing point is $0.460 \mathrm{kcal} / \mathrm{kg}{ }^{\circ} \mathrm{C}$ and latent heat of freezing is $68 \mathrm{kcal} / \mathrm{kg}$. Calculate the enthalpy change during freezing of 8 kg fruit from $25^{\circ} \mathrm{C}$ to $-20^{\circ} \mathrm{C}$.

Answer

■ Example 4.6: 6 kg of water at $25^{\circ} \mathrm{C}$ was boiled to $104^{\circ} \mathrm{C}$ under 1.1 atm of pressure. And then, the steam was heated to $130^{\circ} \mathrm{C}$.
a) Find out the enthalpy change in "kcals" during the heating of water at $25^{\circ} \mathrm{C}$ to vapor at $130^{\circ} \mathrm{C}$.
b) Find out the enthalpy of vapor at $130^{\circ} \mathrm{C}$ in $\mathbf{~ S I}$ unit system by taking into consideration of enthalpy calculations for water.

Data

- latent heat of evaporation of water; 540 $\mathrm{kcal} / \mathrm{kg}$ at $100^{\circ} \mathrm{C}, 532.5 \mathrm{kcal} / \mathrm{kg}$ at $110^{\circ} \mathrm{C}$.
- specific heat of vapor, $1886 \mathrm{~J} / \mathrm{kg} \mathrm{K}$ at $125^{\circ} \mathrm{C}$ and $1891 \mathrm{~J} / \mathrm{kg} \mathrm{K}$ at $150^{\circ} \mathrm{C}$.

Answer

- $\mathrm{E}=3766 \mathrm{kcal}$ (entalphy change from $25^{\circ} \mathrm{C}$ to $130^{\circ} \mathrm{C}$)
- $\mathrm{E}_{130^{\circ} \mathrm{C}}=3916 \mathrm{kcal}$ (entalphy at $130^{\circ} \mathrm{C}$)

Specific heat

- Amount of heat gained or lost for a unit mass of a substance, accompanying a unit change in temperature but not involving with phase change.

$$
C_{p}=\frac{Q}{m(\Delta T)}
$$

- Most solids and liquids have a constant specific heat over a fairly wide temperature range above freezing point.
- Specific heat of gases varies with temperature.

Specific heat of foods;

- Depends on composition and mostly water content.
- Since the food composition changes depending on many factors, most accurate way of calculating specific heat of foods is to do experiment.
- In practice, specific heat of foods is calculated using the equations, if the composition of foods (mass fractions) is known,

■ One of the most important compositional compound of foods is water.

- Specific of heat of water in liquid and solid phase is very different.

Therefore, specific heat of foods,
$>$ Above freezing point
$>$ Below freezing point, are very different.

Above freezing point (Siebel equation)

$$
C_{p}=1 m_{s}+0.2\left(1-m_{s}\right)
$$

m_{s} : Mass fraction of water in food
1: Specific heat of water, $\mathrm{kcal}_{\mathrm{kg}}{ }^{-10} \mathrm{C}^{-1}$ or $\mathrm{BTU} \mathrm{lb}_{\mathrm{m}}{ }^{-10} \mathrm{~F}^{-1}$
0.2: Specific heat of nonfat solids, $\mathrm{kcal}_{\mathrm{kg}}{ }^{-10} \mathrm{C}^{-1}$ or BTU $\mathrm{lb}_{\mathrm{m}}{ }^{-10} \mathrm{~F}^{-1}$
$1-m_{s}$: Mass fraction of nonfat solids in food containing no fat
C_{p} : Specific heat, $\mathrm{kcal} \mathrm{kg}^{-1}{ }^{\circ} \mathrm{C}^{-1}$ or $\mathrm{BTU} \mathrm{lb}_{\mathrm{m}}{ }^{-1}{ }^{\circ} \mathrm{F}^{-1}$

Arranging the equation:

$$
\begin{aligned}
& C_{p}=1 m_{s}+0.2-0.2 m_{s} \\
& C_{p}=m_{s}-0.2 m_{s}+0.2 \\
& C_{p}=(1-0.2) m_{s}+0.2
\end{aligned}
$$

$$
\mathrm{C}_{\mathrm{p}}=0.8 \mathrm{~m}_{\mathrm{s}}+0.2 \text { (English, mks and cgs) }
$$

Arranging the equation in SI

 unit system
$0.8(4.1868)=3.349$

$0.2(4.1868)=0.83736$

C_{p} : Specific heat above freezing point, kJ

$$
\mathrm{kg}^{-1} \mathrm{~K}^{-1}
$$

m_{s} : Mass fraction of water in food

Effect of fat content on specific heat:

- For the animal based products which contain considerable amount of fat, the specific heat of food should be estimated by taking into consideration of the mass fraction of fat (F).

Specific heat of foods containing fats above freezing point

$$
\begin{aligned}
& C_{p}=0.4 \mathrm{~F}+0.2 \mathrm{NFS}+1 \mathrm{M} \text { (English, mks and cgs) } \\
& \mathrm{C}_{\mathrm{p}}=1.67472 \mathrm{~F}+0.83736 \mathrm{NFS}+4.1868 \mathrm{M}(\mathrm{SI})
\end{aligned}
$$

\mathbf{C}_{p} : Specific heat of food containing considerable amount of fat above freezing point, $\mathrm{kJ} / \mathrm{kg} \mathrm{K}$
F: Mass fraction of fat in food
NFS : Mass fraction of non-fat solid in food
M : Mass fraction of water in food

Taking into consideration of carbohydrate, protein and ash:

$$
\begin{aligned}
C_{p(\text { food })}= & 1.424 C+1.549 P+1.675 F+ \\
& 0.837 \mathrm{~A}+4.187 \mathrm{M}
\end{aligned}
$$

- $\mathrm{C}_{\mathrm{p}(\text { food })}: \underline{\mathrm{kJ} / \mathrm{kg} \text { K }}$

Note: (1) C, P, F, A and M is denoted for carbohydrate, protein, fat, ash and water, respectively.
(2) Numbers in front of mass fractions of food constituents is the actual specific heat of each constituent.

- Example 4.7: Calculate the specific heat of orange juice concentrate having a solid content of 45% in SI unit system.

Answer

- $\mathrm{C}_{\text {orange juice }}=0.64 \mathrm{BTU} /\left(\mathrm{lb}_{\mathrm{m}}{ }^{\circ} \mathrm{F}\right)$
- $\mathrm{C}_{\text {orange juice }}=0.64 \mathrm{cal} /\left(\mathrm{g}^{\circ} \mathrm{C}\right)$
- $\mathrm{C}_{\text {orange juice }}=0.64 \mathrm{kcal} /\left(\mathrm{kg}^{\circ} \mathrm{C}\right)$
- Example 4.9: Calculate the specific heat of beef roast containing 15% protein, 20% fat and 65% water in SI unit system.

Answer

- $\mathrm{C}_{\text {roast beef }}=0.76 \mathrm{kcal} /\left(\mathrm{kg}{ }^{\circ} \mathrm{C}\right)$
- $\mathrm{C}_{\text {roast beef }}=3181.4 \mathrm{~J} /(\mathrm{kg} \mathrm{K})$
- Example 4.10: Calculate the specific heat of food containing 30% of carbohydrate, 10% of protein, no fat, 0.4% of ash, 56% of water in SI unit system.

Answer

$$
\begin{aligned}
\mathrm{C}_{\text {food }}= & 1.424 C+1.549 P+1.675 F+ \\
& 0.837 A+4.187 W
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{C}_{\text {food }}= & 1.424(0.3)+1.549(0.1)+0.837(0.004) \\
& +4.187(0.56)
\end{aligned}
$$

■ $\mathrm{C}_{\text {food }}=2.93 \mathrm{~kJ} /(\mathrm{kg} \mathrm{K})$

