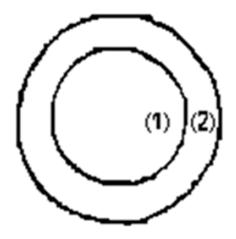
FDE 208 HEAT TRANSFER AND THERMAL PROCESSES

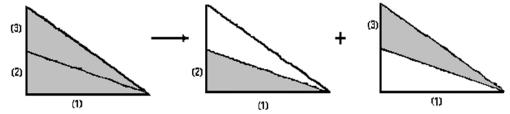
Doç. Dr. Aslı İŞCİ YAKAN Doç. Dr. Özge ŞAKIYAN DEMİRKOL

RADIATION HEAT TRANSFER

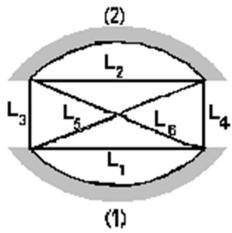

CALCULATION OF SHAPE FACTOR

Shape factor can be defined as the ratio how much energy leaving a surface reaches to the other surface.

For the system given in the figure


F₁₂=1

F₁₁=0


$$F_{1 \to (2,3)} = F_{12} + F_{13}$$

(A₂ + A₃) $F_{(2,3) \to 1} = A_2 F_{21} + A_3 F_{31}$

• Symmetry rule

$$F_{12} = F_{13} = F_{14} = F_{15}$$

$$F_{11} + F_{12} + F_{13} + F_{14} + F_{15} = 1 \Longrightarrow F_{12} = 0,25$$

$$F_{12} = \frac{(L_5 + L_6) - (L_3 + L_4)}{2L_1}$$
$$F_{21} = \frac{(L_5 + L_6) - (L_3 + L_4)}{2L_2}$$

• Radiosity (J): $J_i = \varepsilon_i \cdot E_i + (1 - \varepsilon_i) \cdot G_i$

$$\begin{cases} \phi = \varepsilon(Kirchoff) \\ \Psi = 0 \end{cases} \Rightarrow \chi = (1 - \varepsilon)$$

$$E_i = \boldsymbol{\sigma} \cdot T_i^4$$
$$\varepsilon_i = 1 \Longrightarrow J_i = E_i = \boldsymbol{\sigma} \cdot T_i^4$$

Radiation energy=energy from the surface-energy to the surface

$$Q_i = A_i \left(J_i - G_i \right)$$

$$G_{i} = \frac{J_{i} - \varepsilon_{i} \cdot E_{i}}{1 - \varepsilon_{i}} \Longrightarrow Q_{i} = A_{i} \left(J_{i} - \frac{J_{i} - \varepsilon_{i} \cdot E_{i}}{1 - \varepsilon_{i}} \right) = A_{i} \left(-\frac{\varepsilon_{i} \left(J_{i} + E_{i} \right)}{1 - \varepsilon_{i}} \right)$$