## **CHE 205 MASS AND ENERGY BALANCES**

## Instructors: Assoc. Prof. Ayşe Karakeçili Assist. Prof. Berna Topuz

**BALANCES ON REACTIVE PROCESSES:** 

**GENERAL PROCEDURE** 

HEAT OF REACTION METHOD HEAT OF FORMATION METHOD

Single reaction and standard heat of reaction is known

multiple reactions and when standard heat of reaction is not known

## HEAT OF REACTION METHOD:

- 1. Complete all the material balance calculations.
- 2. Choose the reference states for specific enthalpy calculations. The

references are the reactants and products at 25°C and 1 atm in the

phases.

3. For a single reaction calculate the extent of reaction

- 4. Prepare the inlet and outlet enthalpy table.
- 5. Calculate each unknown enthalpy according to the reference state.
- 6. Calculate  $\Delta H$  for the reactor.

$$\Delta H = \xi \Delta H_r^o + \sum n_{out} H_{out} - \sum n_{in} H_{in}$$

7. Substitute the calculated value of  $\Delta H$  in the energy balance equation.

$$\Delta H = \sum n_{out} H_{out} - \sum n_{in} H_{in}$$

**HEAT OF FORMATION METHOD** 

- 1. Complete all the material balance calculations.
- 2. Choose the reference states for specific enthalpy calculations. The references are the elemental species that constitute the reactant and product species ( $C_s$ ,  $O_{2(g)}$ ,  $H_{2(g)}$ ) at 25°C and 1 atm.
- 3. Prepare the inlet and outlet enthalpy table.
- 4. Calculate each unknown enthalpy according to the reference state.
- **5.** Calculate  $\Delta H$  for the reactor.

$$\Delta H = \sum n_{out} H_{out} - \sum n_{in} H_{in}$$

6. Substitute the calculated value of  $\Delta H$  in the energy balance equation.

**YOUR TURN** 

١.

n-Butane (n-C<sub>4</sub>H<sub>10</sub>) at 25 °C is burned with excess air (at 100 °C) in a continuous combustion chamber

 $C_4H_{10}(g) + 13/2 O_2(g) \rightarrow 4CO_2(g) + 5H_2O(g)$ 

The product gas (at 250°C) contains 0.25 mol% butane, 5.9 mol% oxygen ( $O_2$ ), 11.4 mol% carbon dioxide ( $CO_2$ ) and the balance nitrogen on dry basis.

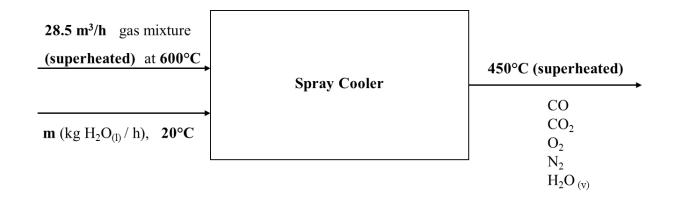
a) Assume 100 mol of dry product as basis. Draw and label the flow chart.

b) Calculate the fractional conversion of n-butane (mol reacted/ mol fed), amount of water (mol  $H_2O$  (g)) leaving the combustion chamber and the amount of excess air.

c) Calculate the amount of heat that is transferred to or from the combustion chamber if n-butane enters at 25°C, air enters at 100°C and all the products leave at 250°C.

١١.

Ammonia is oxidized in a continuous reactor;


$$4 NH_{3(g)} + 5 O_{2(g)} \rightarrow 4 NO_{(g)} + 6 H_2O_{(v)}$$

 $\Delta Hr^0 = -904.7 \text{ kJ/mol}$ 

The feed stream (containing NH<sub>3</sub> and O<sub>2</sub>) enters at 200°C and the products (O<sub>2</sub>, NO and H<sub>2</sub>O) leave at 1200°C. The mole ratio of NH<sub>3</sub> to O<sub>2</sub> in the feed is 2:3 (NH<sub>3</sub> / O<sub>2</sub> = 2:3). Draw and label the flow chart. Calculate the required heat transfer to or from the reactor.

III.

A superheated gas mixture at 600°C and 1 atm flowing at a rate of 28.5 m<sup>3</sup> (STP)/h is to be cooled to 450°C in an adiabatic spray cooler. The gas mixture contains 17.1 mole % water vapor ,  $H_2O$  (v) and has a dry-basis composition of 7.5 mole% CO, 11.5% CO<sub>2</sub>, 1% O<sub>2</sub> and 80 % N<sub>2</sub>. A liquid water at 20°C is sprayed into the hot gas at a rate of m (kg  $H_2O$  (l)/ h). Calculate the liquid water feed rate (m) in kg/h.

