1. SETS

Definition: In mathematics, a well-defined collection of distinct objects is called a set. We generally use capital numbers to denote sets such as $A, B, X, Y \ldots$ An object from a set is called an element of the set. We generally use lowercase letters to denote elements such as $a, b, x, y \ldots$

If x is an element of the set A then we write $x \in A$. The set which does not have any element is called the empty set. We dente the empty set with \varnothing.

Definition: Let X and Y be two sets. If for any $x \in X$ we have $y \in Y$ then we say that X is a subset of Y or Y contains X. I this case we write $X \subset Y$. Note that empty set is the subset of any set.

Set operations: Let X be a set and let $A, B \subset X$.
i) The set which consists of all common elements of A and B is called the intersection of A and B. This set is denoted by $A \cap B$.

$$
A \cap B:=\{x \in X: x \in A \wedge x \in B\}
$$

ii) The set which consists of all elements of A and B is called the union of A and B. This set is denoted by $A \cup B$.

$$
A \cup B:=\{x \in X: x \in A \vee x \in B\}
$$

iii) The set that consists of the elements which do not belong A is called the complement of A and denoted by A^{c}.

Example 1: Prove that
i) $(A \cup B)^{c}=A^{c} \cap B^{c}$
ii) $(A \cap B)^{c}=A^{c} \cup B^{c}$.

Solution:

$$
\text { i) } \begin{aligned}
x \in(A \cup B)^{c} & \Leftrightarrow x \notin A \cup B \\
& \Leftrightarrow x \notin A \text { and } x \notin B \\
& \Leftrightarrow x \in A^{c} \text { and } x \in B^{c} \\
& \Leftrightarrow x \in A^{c} \cap B^{c} \\
\text { ii) } x \in(A \cap B)^{c} & \Leftrightarrow x \notin A \cap B \\
& \Leftrightarrow x \notin A \text { or } x \notin B \\
& \Leftrightarrow x \in A^{c} \text { or } x \in B^{c} \\
& \Leftrightarrow x \in A^{c} \cup B^{c}
\end{aligned}
$$

Example 2: Prove that

$$
(A \cap B) \mathrm{x} C=(A \mathrm{x} C) \cap(B \mathrm{x} C)
$$

Solution:

$$
\begin{aligned}
x \in(A \cap B) \times C & \Leftrightarrow x \in A \cap B \text { and } y \in C \\
& \Leftrightarrow(x \in A \text { and } x \in B) \text { and } y \in C \\
& \Leftrightarrow(x \in A \text { and } y \in C) \text { and }(x \in B \text { and } y \in C) \\
& \Leftrightarrow(x, y) \in A \times C \text { and }(x, y) \in B \times C \\
& \Leftrightarrow(x, y) \in(A \times C) \cap(B \times C)
\end{aligned}
$$

