2. NUMBERS

Example 1: Prove that $\sqrt{3}+\sqrt{5}$ is not a rational number.
Solution: Suppose that $\sqrt{3}+\sqrt{5}$ is a rational number. Then we can write

$$
\sqrt{3}+\sqrt{5}=r \quad \text { where } \quad r \in \mathbb{Q}
$$

Now

$$
\begin{aligned}
(\sqrt{3}+\sqrt{5})^{2}=r^{2} & \Rightarrow 8+2 \sqrt{15}
\end{aligned}=\begin{gathered}
\text { irrasyonel }
\end{gathered}=\underbrace{\frac{r^{2}}{r^{2}-8}}_{\text {rational }} .
$$

which is a contraction. So, $\sqrt{3}+\sqrt{5}$ cannot be a rational number.
Example 2: Prova that there is no rational number whose cube is 2.
Solution: Assume that $\sqrt[3]{2}$ is a rational number. Then we can write

$$
\sqrt[3]{2}=\frac{p}{q} \in \mathbb{Q} \quad, \quad(p, q)=1
$$

Now

$$
\frac{p^{3}}{q^{3}}=2 \Longrightarrow p^{3}=\underbrace{2 q^{3}}_{\text {even }}
$$

Since p^{3} is an even number, p is an even number. Then, there exits a $k \in \mathbb{Z}$ such that $p=2 k$. On the other hand we have

$$
\begin{aligned}
p^{3}=2 q^{3} & \Longrightarrow 8 k^{3}=2 q^{3} \\
& \Longrightarrow 4 k^{3}=q^{3}
\end{aligned}
$$

which means that q^{3} is even, i.e. q is an even number. Thus we get $(p, q)=2$ which is a contradiction.

Example 3: Prove that

$$
3^{n}+4^{n} \leq 5^{n} \text { for all } n \in \mathbb{N}_{2}
$$

Solution:

The statement is true for $n=2$ since $3^{2}+4^{2}=25 \leq 5^{2}=25$. Assume that the statement true for $n=k$. i.e.

$$
3^{k}+4^{k} \leq 5^{k}
$$

If we multiply both hand sides by 5 then we have

$$
\begin{aligned}
& 3^{k} 5+4^{k} 5 \leq 5^{k+1} \\
& 3^{k} 3+4^{k} 4 \leq 3^{k} 3+4^{k} 4 \leq 5^{k} 5 \\
& 3^{k+1}+4^{k+1}<53^{k}+54^{k} \leq 5^{k+1} .
\end{aligned}
$$

Then the statement is true for $n=k+1$. Thus $3^{n}+4^{n} \leq 5^{n}$ for all $n \in \mathbb{N}_{2}$ due to mathematical induction.

