2. NUMBERS

Example 1: Prove that $\sqrt{3} + \sqrt{5}$ is not a rational number.

Solution: Suppose that $\sqrt{3} + \sqrt{5}$ is a rational number. Then we can write

$$\sqrt{3} + \sqrt{5} = r \quad where \quad r \in \mathbb{Q}$$
.

Now

$$\left(\sqrt{3} + \sqrt{5}\right)^2 = r^2 \Rightarrow 8 + 2\sqrt{15} = r^2$$
$$\Rightarrow \underbrace{\sqrt{15}}_{irrasyonel} = \underbrace{\frac{r^2 - 8}{2}}_{rational}$$

which is a contraction. So, $\sqrt{3} + \sqrt{5}$ cannot be a rational number. **Example 2:** Prova that there is no rational number whose cube is 2. **Solution:** Assume that $\sqrt[3]{2}$ is a rational number. Then we can write

$$\sqrt[3]{2} = \frac{p}{q} \in \mathbb{Q}$$
 , $(p,q) = 1$.

Now

$$\frac{p^3}{q^3} = 2 \implies p^3 = \underbrace{2q^3}_{even} .$$

Since p^3 is an even number, p is an even number. Then, there exits a $k \in \mathbb{Z}$ such that p = 2k. On the other hand we have

$$p^3 = 2q^3 \implies 8k^3 = 2q^3 \\ \implies 4k^3 = q^3$$

which means that q^3 is even, i.e. q is an even number. Thus we get (p,q) = 2 which is a contradiction.

Example 3: Prove that

$$3^n + 4^n \leq 5^n$$
 for all $n \in \mathbb{N}_2$.

Solution:

The statement is true for n = 2 since $3^2 + 4^2 = 25 \le 5^2 = 25$. Assume that the statement true for n = k. i.e.

$$3^k + 4^k \le 5^k.$$

If we multiply both hand sides by 5 then we have

Then the statement is true for n = k + 1. Thus $3^n + 4^n \leq 5^n$ for all $n \in \mathbb{N}_2$ due to mathematical induction.