3. LINEAR POINT SETS

Definition: A subset of real numbers is said to be a linear point set.
Definition: Let A be a linear set and let u, v be a real number. If for any $x \in A$ we have $x \leq u$ then we say u is an upper bound of A and the set A is said to be upper bounded set. Similarly, if for any $x \in A$ we have $x \geq v$ then we say v is a lower bound of A and the set A is said to be lower bounded set. If a set is both bounded above and below it is called a bounded set.

Definition: An element of an upper bounded set A is said to be the maximum (of A) if it is greater than or equal to each element of the set. Maximum of A is denoted by max A.

Definition: An element of a lower bounded set is said to be the minimum (of A) if it is less than or equal to each element of the set. Minimum of A is denoted by $\min A$.

Definition: The least upper bound of an upper bounded set A is said to be the supremum (of A). Supremum of A is denoted by supA.

Definition: The greatest lower bound of a lower bound set A is said to be the infimum (of A). Infimum of A is denoted by inf A.
The following axiom guarentees the existence of supremum (infimum) of an upper bounded (a lower bounded) set:

Axiom of completeness: Every upper bounded subset of real numbers has a least upper bound.

Theorem: If the supremum of an upper bounded set belong to the set then it is the maximum and if the infimum of a lower bounded set belong to the set then it is the minimum.

Definition: Let A be a linear point set and let x is a real number. If in any deleted neighbourhood of x there exist a point of A then x said to be an accumulation point of A. Accumulation points of the set A is denoted by A^{\prime}.

Example 1: Let

$$
A=\left\{\frac{(-1)^{n+1}}{n+1}: n \in \mathbb{N}\right\}
$$

Find $\sup A, \inf A, \operatorname{maks} A, \min A, A^{\prime}$.
Solution: It is clear that $A=\left\{\frac{1}{2},-\frac{1}{3}, \frac{1}{4},-\frac{1}{5}, \ldots\right\}$. It is easy to see that

$$
\inf A=\frac{1}{3} \in A \Longrightarrow \min A=-\frac{1}{3}
$$

$$
\sup A=\frac{1}{2} \in A \Longrightarrow \operatorname{maks} A=\frac{1}{2}
$$

On the other hand for any n we can show that $\frac{(-1)^{n+1}}{n+1} \notin A^{\prime}$. Indeed; for

$$
\begin{aligned}
\varepsilon & =\left|\frac{(-1)^{n+1}}{n+1}-\frac{(-1)^{n+3}}{n+3}\right| \\
& =\left|\frac{1}{n+1}-\frac{1}{n+3}\right| \\
& =\left|\frac{2}{(n+1)(n+3)}\right| \\
& =\frac{2}{(n+1)(n+3)}
\end{aligned}
$$

we get

$$
\left[\left(\frac{(-1)^{n+1}}{n+1}-\varepsilon-\frac{(-1)^{n+3}}{n+3}+\varepsilon\right) \cap A\right] \backslash\left\{\frac{(-1)^{n+1}}{n+1}\right\}=\emptyset
$$

Moreover for any given $\varepsilon>0$ there exists n such that $\frac{1}{n}<\varepsilon$. Hence $\frac{1}{n+1}<\varepsilon$. Since $\{(-\varepsilon, \varepsilon) \cap A\} \backslash\{0\} \neq \emptyset$, we get $0 \in A^{\prime}$. Thus $A^{\prime}=\{0\}$.

Example 2: Let S and T be nonempty bounded subsets of real numbers. Prove that
a) If $S \subseteq T$ then $\inf T \leq \inf S \leq \sup S \leq \sup T$.
b) $\sup (S \cup T)=\max \{\sup S, \sup T\}$

Solution:

a) Since S and T are bounded and nonempty sets the supremum and infimum of them exist and $\inf S \leq \sup S$. So, it is enough to show that $\inf T \leq \inf S$ and $\sup S \leq \sup T$. For all $y \in T$ we know that $y \leq \sup T$. Since $\sup S$ is the least upper bound for S, we have $\sup T \geq \sup S$.

Similarly, to show that $\inf T \leq \inf S$, notice that $\inf T$ is a lower bound for T. Since $S \subseteq T$, we get $x \geq \inf T$ for all $x \in S$. Then $\inf T$ is a lower bound for S. Since $\inf S$ is the greatest lower bound of S, we get $\inf T \leq \inf S$.
b) From (a) one can have

$$
\begin{gathered}
\sup S \leq \sup (S \cup T) \\
\sup T \leq \sup (S \cup T)
\end{gathered}
$$

Thus, we get $m a k s\{\sup S, \sup T\} \leq \sup (S \cup T)$. Now for all $x \in S$ we can write $x \leq \sup S \leq \operatorname{maks}\{\sup S, \sup T\}$ and for all $y \in T$ we can write $y \leq \sup T \leq m a k s\{\sup S, \sup T\}$. Let $a \in S \cup T$. As

$$
\begin{array}{rlrl}
a \in S \cup T & \Longrightarrow a \in S & & \text { or } \quad a \in T \\
& \Longrightarrow a \leq m a k s\{\sup S, \sup T\} & \text { or } \quad a \leq \operatorname{maks}\{\sup S, \sup T\}
\end{array}
$$

$m a k s\{\sup S, \sup T\}$ is an upper bound for $S \cup T$. From the definition; we get $\sup (S \cup T) \leq m a k s\{\sup S, \sup T\}$.

Greatest Integer Function

Definition: Let x be a real number. The greatest integer which is less than or equal to x is denoted by $[|x|]$.

Example 1: Solve the equation

$$
[|3 x|]=3[|x|]
$$

Solution: We can write

$$
\begin{array}{ccc}
x=[|x|]+t & , \quad 0 \leq t<1 \\
3 x=3[|x|]+3 t & , \quad 0 \leq 3 t<3
\end{array}
$$

which implies

$$
[|3 x|]=\left\{\begin{array}{ccc}
3[|x|] & , \quad 0 \leq 3 t<1 \\
3[|x|]+1 & , \quad 1 \leq 3 t<2 \\
3[|x|]+2 & , \quad 2 \leq 3 t<3
\end{array}\right.
$$

Then whenever $0 \leq 3 t<1,[|3 x|]=3[|x|]$ holds. This means that the fraction part of the number x is smaller than $\frac{1}{3}$, i.e., $[|3 x|]=3[|x|]$ if $0 \leq t<\frac{1}{3}$. Thus the solution set is $\underset{m \in \mathbb{Z}}{\cup}\left[m, m+\frac{1}{3}\right)$.

