4. FUNCTIONS-1

Definition: Let A and B be two sets. Any subset of $A \times B$ is called a relation from A to B.

Definition: A relation f from A to B is said to be a function (well-defined) from A to B if for each $a \in A$ there exists a unique $b \in B$ such that $(a, b) \in f$. In this case we write $f: A \rightarrow B$ and $f(a)=b$. The set A is called the domain of f and the set B is the range of f.

Definition: Let $f: A \rightarrow B$ a function, let $E \subset A$ and let $H \subset B$. The set

$$
f(E):=\{f(x) \in B: x \in E\} \subset B
$$

is called the image of the set A. The set

$$
f^{-1}(H):=\{x \in A: f(x) \in B\} \subset A
$$

is called the pre-image of the set B.
Example 1: Let $f: X \rightarrow Y$ be a function. Show that

$$
f(A \cup B)=f(A) \cup f(B)
$$

for any $A, B \subset X$.
Solution: We are going to show that
i) $f(A \cup B) \subset f(A) \cup f(B)$
ii) $f(A) \cup f(B) \subset f(A \cup B)$.
i) Let $y \in f(A \cup B)$. Then we have

$$
\begin{aligned}
\exists x & \in A \cup B \ni f(x)=y \\
& \Longrightarrow \exists x \in A \ni f(x)=y \text { or } \exists x \in B \ni f(x)=y \\
& \Longrightarrow y \in f(A) \text { or } y \in f(B) .
\end{aligned}
$$

So, we get $f(A \cup B) \subset f(A) \cup f(B)$.
ii) Since $A \subset A \cup B$, we get $f(A) \subset f(A \cup B)$. Similarly, as $B \subset A \cup B$, we get $f(B) \subset f(A \cup B)$. Then $f(A) \cup f(B) \subset f(A \cup B)$.

Finally, from (i) and (ii) the equality is obtained.
Example 2: Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a function defined by $f(x)=\sqrt{x}-1$ and let $A=[0,1) \cup\left\{1+\frac{1}{n}: n \in \mathbb{N}\right\}$. Determine the following sets:
a) $f(A)$
b) $f^{-1}(A)$.

Solution:

a) We know that $f(A \cup B)=f(A) \cup f(B)$. Then we have

$$
\begin{aligned}
f([0,1)) & =\{f(x): x \in[0,1)\} \\
& =\{\sqrt{x}-1: 0 \leq x<1\} \\
& =\{\sqrt{x}-1: 0 \leq \sqrt{x}<1\} \\
& =\{\sqrt{x}-1:-1 \leq \sqrt{x}-1<0\} \\
& =[-1,0)
\end{aligned}
$$

and

$$
\begin{aligned}
f\left(\left\{1+\frac{1}{n}: n \in \mathbb{N}\right\}\right) & =\left\{f(x): x \in\left\{1+\frac{1}{n}: n \in \mathbb{N}\right\}\right\} \\
& =\left\{\sqrt{x}-1: \exists n \in \mathbb{N} \ni x=1+\frac{1}{n}\right\} \\
& =\left\{\sqrt{1+\frac{1}{n}}-1: n \in \mathbb{N}\right\} .
\end{aligned}
$$

Hence $f(A)=[-1,0) \cup\left\{\sqrt{1+\frac{1}{n}}-1: n \in \mathbb{N}\right\}$.
b) We know that $f^{-1}(A)=f^{-1}(A) \cup f^{-1}(B)$. Then we can write

$$
\begin{aligned}
f^{-1}([0,1)) & =\{x \in[0, \infty): f(x) \in[0,1)\} \\
& =\{x \in[0, \infty): 0 \leq \sqrt{x}-1<1\} \\
& =\{x \in[0, \infty): 1 \leq \sqrt{x}<2\} \\
& =\{x \in[0, \infty): 1 \leq x<4\} \\
& =[1,4) .
\end{aligned}
$$

and

$$
\begin{aligned}
& f^{-1}\left(\left\{1+\frac{1}{n}: n \in \mathbb{N}\right\}\right)=\left\{x \in[0, \infty): f(x) \in\left\{1+\frac{1}{n}: n \in \mathbb{N}\right\}\right\} \\
&=\left\{\begin{array}{l}
\left.x \in[0, \infty): \exists n \in \mathbb{N} \ni f(x)=1+\frac{1}{n}\right\} \\
\\
\\
\\
\\
\end{array}= \begin{cases}\left.x \in[0, \infty): \exists n \in \mathbb{N} \ni \sqrt{x}-1=1+\frac{1}{n}\right\} \\
& =\left\{(0, \infty): \exists n \in \mathbb{N} \ni x=\left(2+\frac{1}{n}\right)^{2}\right\}\end{cases} \right. \\
&\left.\left(2+\frac{1}{n}\right)^{2}: n \in \mathbb{N}\right\} .
\end{aligned}
$$

Hence $f^{-1}(A)=[1,4) \cup\left\{\left(2+\frac{1}{n}\right)^{2}: n \in \mathbb{N}\right\}$.
Example 3: Find the domain of the each of the following functions:
a) $f(x=\sqrt{x-1}+\sqrt{5-x})$
b) $f(x)=\sqrt{1-\sqrt{9-x^{2}}}$

Solution:

a) $x-1 \geq 0$ and $5-x \geq 0$ imply $D_{f}=[1,5]$.
b) As

$$
\begin{array}{rlc}
1-\sqrt{9-x^{2}} \geq 0 & \Leftrightarrow & \sqrt{9-x^{2}} \leq 1 \\
& \Leftrightarrow & 0 \leq 9-x^{2} \leq 1 \\
& \Leftrightarrow & x^{2} \leq 9 \text { and } x^{2} \geq 8 \\
& \Leftrightarrow & -3 \leq x \leq 3 \text { and } \mathrm{x} \geq 2 \sqrt{2} \text { and } \mathrm{x} \leq-2 \sqrt{2}
\end{array}
$$

we have $D_{f}=[-3,-2 \sqrt{2}] \cup[2 \sqrt{2}, 3]$.

